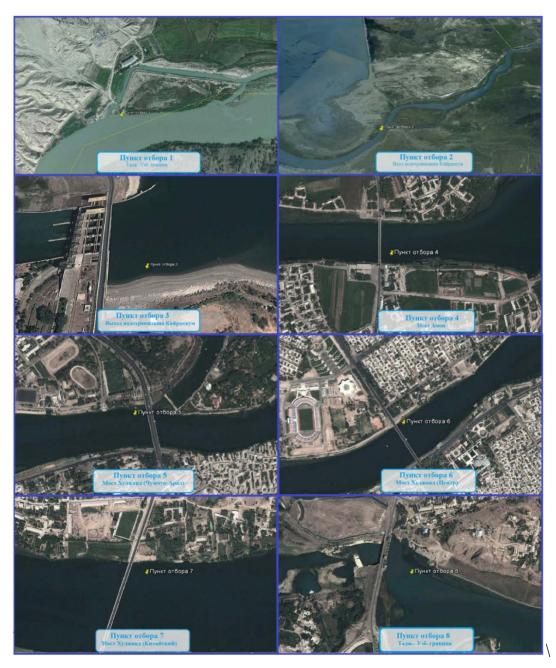
Правильный отбор проб и пробоподготовка – гарантия получения достоверных результатов анализа воды

Разыков З. А, Шерматов Дж. Н., Ходжибаев Д. Д., Назаров Х.М.

Горно-металлургический институт Таджикистана, ул. Московская 6, 735730, г. Чкаловск, Республика Таджикистан *Email: zafarrazykov@mail.ru, jamshed8808@mail.ru, daler_8788@mail.ru*

Тезисы

В последнее время охрана окружающей среды стала одной из актуальных задач общества. Для принятия эффективных мер в этом направлении необходимо иметь достоверный анализ среды. Данная работа посвящена методам отбора проб воды из реки Сырдарья и их подготовки для анализа в лабораторных условиях.


В системе охраны природы и здоровья населения, проблема контроля качества воды занимает особое место, определяющее место. Это обусловлено, в первую очередь, многочисленными фактами интенсивного загрязнения природных водоемов и источников водозаборов производственными стоками, содержащими опасные для здоровья людей соединения. Поэтому пробоотбор воды — важная стадия анализа, от которой зависит правильность аналитической оценки загрязнения воды, причем получаемые результаты ложатся в основу практических выводов. Приемы взятия проб воды должны обеспечить возможно более полное сохранение первоначального состава и предохранить пробу от возможных загрязнений. Погрешности, возникающие вследствие неправильного отбора пробы, в дальнейшем исправить нельзя [1].

В нормативных документах (ГОСТ 24481, ГОСТ 17.1.5.05, ИСО 5667-2 и др.) определены основные правила и рекомендации, которые следует использовать для получения репрезентативных проб. Различные виды водоемов обуславливают некоторые особенности отбора проб в каждом случае. Рассмотрим основные из них для нашего случая. Для определения влияния места сброса сточных вод и притоков, пробы отбирают выше по течению и в точке, где произошло полное смешение вод (рис.1).

Следует иметь в виду, что загрязнения могут быть неравномерно распространены по потоку реки, поэтому обычно пробы отбирают в местах максимально бурного течения, где потоки хорошо перемешиваются. Пробоотборники помещают вниз по течению потока, располагая на нужной глубине. Необходимо отметить, что качество воды в водоемах (как озерах, так и реках) носит циклический характер, причем наблюдается суточная и сезонная цикличность.

По этой причине ежедневные пробы следует отбирать в одно и то же время суток, а продолжительность сезонных исследований должна быть не менее 1 года, включая исследования серий проб, отобранных в течение каждого времени года. Это особенно важно для определения качества воды в реках, имеющих резко отличающиеся режимы межень и паводок.

В воде протекают процессы окисления-восстановления, сорбции, седиментации, биохимические процессы, вызванные жизнедеятельностью микроорганизмов и др. В результате некоторые компоненты могут окисляться или восстанавливаться: нитраты — до нитритов или ионов аммония, сульфаты — до сульфитов; кислород может расходоваться на окисление органических веществ и т. п. соответственно могут изменяться и органолептические свойства воды — запах, привкус, цвет, мутность. Биохимические процессы можно замедлить, охладив воду до температуры 4-5°С (в холодильнике). В наших случаях использовалось переносной холодильник (THERMOS).

Рисунок 1 Пункты отбора проб

В зависимости от предполагаемой продолжительности хранения отобранных проб может возникнуть необходимость в из консервации. Универсального консервирующего средства не существует, поэтому пробы для анализа отбирают в несколько бутылей. В каждой из них воду консервируют, добавляя соответствующие химикаты в зависимости от определяемых компонентов. Следует иметь в виду, что ни консервация, ни фиксация не обеспечивает постоянства состава воды неограниченно долго.

Оно лишь сохраняют на определенное время соответствующий компонент в воде, что позволяет доставить пробы к месту анализа - например, в полевой лагерь, а при необходимости – и в специализированную лабораторию. В протоколах отбора и анализа проб обязательно указываются даты отбора и анализа проб.

Состав природных вод оценивается по физическим, химическим и санитарногигиеническим показателям. Для оценки качества отобранной нами пробы из природных вод в полевых условиях был использован прибор CyberScan PSD 650. Результаты полевых измерений проб обобщены в табл.1.

Таблица 1 – Некоторые физические параметры проб воды бассейна реки Сырдарья в пределах Согдийской области Таджикистана

Пункты	Параметр									
отбора	pН	t, ⁰ C	ORP, mV	EC, mS	TDS,	NaCl,	R, κΩ	DO, %	DO, mg/l	
УзбТадж. Граница (ТАЈ-1)	8.0	26	-75.7	1.346	1.350	1.316	0.369	88	6.72	
Кайраккум- начало вдхр. (ТАЈ-2)	8.1	26	-79.6	1.571	1.609	1.534	0.310	110	8.50	
Кайраккум- плотина вдхр. (ТАЈ-3)	8.4	28	-100	1.363	1.418	1.334	0.352	85	6.84	
Мост «Амон» (ТАЈ-4)	8.3	28	-88.9	1.440	1.465	1.395	0.340	130	10.1 5	
Мост «Чумчук- Арал» (TAJ-5)	8.3	28	-91.3	1.377	1.450	1.350	0.346	99	7.66	
Мост «Юбилейный» (ТАЈ-6)	8.2	28	-88.6	1.371	1.435	1.342	0.349	98	7.63	
Мост «Ёва» (ТАЈ-7)	8.1	28	-81	1.385	1.471	1.342	0.344	86	6.67	
Тадж. Узб. Граница (ТАЈ-8)	8.1	28	-82.8	1.391	1.553	1.360	0.327	90	6.67	

Физические показатели — температура, содержание взвешенных веществ, цветность, запах и привкус. Температура подземных вод относительно стабильна в течение года: $8-12~^{0}$ C, а поверхностных вод колеблется по сезонам года в интервале $0.1+30^{0}$ C. Прозрачность и мутность характеризуют наличие в воде взвешенных веществ. Цветность воды обусловлена присутствием органических веществ.

Далее качество воды нами были изучены с методом атомно-абсорбционного анализа с использованием спектрометра AAnalyst 800.

Атомно-абсорбционный анализ достаточно близок к методам традиционной мокрой химии, поскольку определение содержания элементов чаще всего ведется из растворов, что предусматривает во многих случаях предварительную химическую подготовку проб. Однако, в отличие от большинства химических методов, атомно-абсорбционная спектрометрия имеет очень высокую селективность. Поэтому практически редко требуется отделение сопутствующих элементов, так как их присутствие обычно не вызывает заметной систематической погрешности при определении. Это связано с тем, что число используемых абсорбционных спектральных линий невелико, и они обладают очень малой шириной, порядка 10^{-3} - 10^{-2} нм. В результате этого возможность взаимного наложения спектральных линий различных элементов очень мала. Поэтому процедура подготовки образцов к анализу существенно

проще, чем для обычных методов «мокрой» химии, и редко требуют по времени аналитических операций.

Современная техника атомно-абсорбционного анализа, реализуя гибкость метода, позволяет устанавливать содержание элементов в широком интервале концентраций:

- -в пламени от десятитысячных долей процента до десятков массовых процентов;
- в электротермических атомизаторах нижняя граница определяемых массовых долей для многих элементов составляет 10^{-6} $10^{-4}\%$ масс., верхняя до диапазона пламенных определений.

Метод успешно применяется для анализа как легко растворимых металлов и сплавов, так и для объектов, которые достаточно трудно перевести в раствор.

Использование электротермической атомизации позволяет понизить на 1-2 порядка пределы обнаружения элементов по сравнению с пламенем, сохраняя достаточно высокую воспроизводимость результатов анализа. Рещающим фактором, определяющим правильность и воспроизводимость результатов атомно-абсорбционного анализа, является стабильность свойств поглощающего слоя атомных паров. Результаты анализов проб на некоторые тяжелые металлы спектрометром AAnalyst 800 обобщены в табл. 2.

Таблица 2 – Содержание тяжелых металлов в составе воды реки Сырдарья

Пункты отбора	,	Элементы, мкг/л					
	Cr	As	Cd	Ni			
УзбТадж. Граница (ТАЈ-1)	0.68	1.22	0.03	0.82			
Кайраккум- начало вдхр. (TAJ-2)	0.96	1.65	0.01	0.26			
Кайраккум- плотина вдхр. (TAJ-3)	0.40	1.75	0.07	0.93			
Мост «Амон» (ТАЈ-4)	0.36	1.35	0.02	0.30			
Мост «Чумчук-Арал» (ТАЈ-5)	0.39	1.98	0.02	0.08			
Мост «Юбилейный» (ТАЈ-6)	0.44	1.8	0.008	0.08			
Мост «Ёва» (ТАЈ-7)	0.49	1.49	0.01	0.19			
Тадж. Узб. Граница (ТАЈ-8)	0.6	1.85	0.03	0.87			

Ключевые слова: пробоотбор; методы; анализы; Сырдарья.

Литература

Методы пробоотбора и пробоподготовки / Ю.А.Карпов, А.П.Савостин.-М.:БИНОМ. Лаборатория знаний, 2003.-243 с.

Пламенный и электротермический атомно-абсорбционный анализ с использованием спектрометра Aanalyst 800 /учебное электронное текстовое издание подготовлено кафедрой «Физико-химические методы анализа» - Екатеринбург: ГОУ ВПО УГГУ –УПИ, 2006