Методы очистки сточных вод рыбоперерабатывающего предприятия

Ашуров А, Шерматов Дж.Н.*, Саидов А.М.

Горно-металлургический институт Таджикистана, ул. Московская 6, 735730, г. Чкаловск, Республика Таджикистан *Email: jamshed8808@mail.ru

Тезисы

Одним из основных направлений работы по охране водных ресурсов является внедрение прогрессивных технологических процессов очистки сточных вод и переход предприятий на замкнутые (бессточные) циклы водоснабжения, в которых обработанные воды не сбрасываются, а многократно используются. В таких циклах промышленного водоснабжения можно применять химические методы обработки сточных вод [1].

Сточные воды рыбоперерабатывающих предприятий относятся к высококонцентрированным стокам и содержат многочисленные и различные по природе загрязнения.

Промышленные сточные воды, сбрасываемые этими предприятиями, разделяются на четыре категории:

- загрязненные, содержащие жиры;
- загрязненные нежирные;
- незагрязненные от барометрических конденсаторов и от освежения оборотной воды с температурой 25—40°C.

Сточные воды перед сбросом в сеть общего стока должны подвергаться дезинфекции хлором или хлорной известью. Из сети общего стока сточная вода предприятия направляется в городскую канализацию или на местные очистные канализационные сооружения.

При самостоятельных сооружениях биологической очистки сточных вод незагрязненные воды объединяются с грязными для снижения степени загрязнения последних, и сеть незагрязненных вод исключается. Такое объединение стоков допускается и при выпуске их в систему городской канализации. При всех условиях выпуска сточных вод на территории рыбозавода должны быть предусмотрены следующие местные очистные сооружения:

- -решетки, песколовки и жироловки для производственных жирных вод;
- -отстойник для зольных вод посолочного цеха.

Сточные воды, особенно богатые жирами, перед выпуском в общую жироловку предварительно обрабатываются в местных цеховых жироловках. Время пребывания сточных вод в общей жироловке принимается равным 0.25 ч.

Для малых рыбозаводов с количеством сточных вод до 500 м3 в сутки при биологической очистке в искусственно созданных условиях применяются капельные биофильтры или контактные биофильтры автоматического действия. При этом используют очищенную сточную воду для разбавления (рециркуляции) неочищенных стоков с доведением их БПК до 400 мг/л. Для рыбозаводов с расходом сточных вод от 500 до 1000 м3 в сутки применяются биофильтры любой конструкции (капельные двухступенчатые, аэрофильтры и башенные). В качестве первичных отстойников

независимо от количества сточных вод следует применять осветлители-перегниватели с естественной или искусственной аэрацией.

К проблемам, связанным с загрязняющими агентами, обычно относятся:

- Высокая концентрация твердых частиц и органических веществ в сточной воде;
- Повышенные концентрации солей (Хлорид натрия);
- Высокие значения ХПК (Масла, жиры и белки);
- Аммоний азот и фосфор;

В рыбной промышленности загрязненная вода, это сложная биохимическая система, образующаяся в процессе посола рыбы и состоящая из воды, хлорида натрия, солерастворимых белков, тканевых и бактериальных ферментов.

При промышленном производстве слабосоленой продукции из мелкой рыбы применяют посол в циркулирующих загрязненных водах. ,

Рыбоперерабатывающый комплекс ОУЛУ С НАСЕЛЕНИЕМ 150 000 ЧЕЛОВЕК оснащена системой механическо-биологической очистки сточных вод была сконструирована 50 лет назад и обслуживала 50 000 человек. В то время в городе не было другой промышленности кроме рыбной, и сточные воды вместе с отходами рыбной промышленности сбрасывались в море.

В соответствии с Директивой ЕС по очистке сточных вод в районах с повышенной чувствительностью, требования по удалению общих фосфатов более жесткие (<0.5 мг- $P/дм^3$). Решение реконструировать очистные сооружения до химикобиологической системы очистки сточных вод для обслуживания населения в $200\,000$ человек в 2030 году. сопряжено тем, что очистные сооружения расположены на территории, которую невозможно расширить.

Обзор методов очистки загрязненных вод рыбоперерабатывающих предприятий в ограниченном территории в том числе на рассматриваемом объекте как наиболее приемлемым, на наш взгляд является «Метод регенерация и повторного использования загрязненных вод рыбоперерабатывающего комплекса» при котором выполняется условия современных требований и требования администрации города (таблица 1)

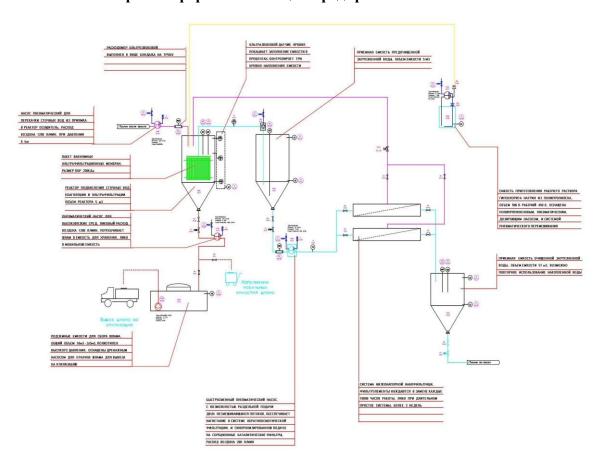
Таблина 1 Т	ребования администрации города	1
-------------	--------------------------------	---

	Настоящее время	В будущем		
Производительность	150 000 чел.	200 000 чел. + 30 000 экв.чел.		
		Директива ЕС по очистке		
Взвешенные вещества	50 мг/дм ³	сточных вод в районах с		
Взвешенные вещества		повышенной		
		чувствительностью		
Общее количество Р	2 мг/дм ³	0.5 мг-P/дм^3		
Общее количество N	30 мг/дм ³	Директива ЕС по очистке		
	170 мг/дм ³	сточных вод в районах с		
ХПК		повышенной		
		чувствительностью		
рН	7.7	7.7		

При разработке новых технологий очистки сточных вод рыбоперерабатывающих предприятий следует учитывать ряд обстоятельств: - ограниченные размеры площадок под очистные сооружения и их насыщенность инженерными коммуникациями; - уровень залегания грунтовых вод; -необходимость

строительства или реконструкции очистных сооружений в короткие сроки без какихлибо нарушений технологического цикла действующего предприятия.

Разработанные и прошедшие экспериментальную проверку новые компактные сооружения для глубокой очистки сточных вод в настоящее время внедрены на многих рыбоперерабатывающих предприятиях. Технология, положенная в основу работы сооружений, предусматривает:


- извлечение крупных отбросов на решетках, песка и других минеральных примесей в тангенциальных песколовках;
 - удаление взвешенных веществ и жиров в отстойниках-флотаторах;
- двухступенчатую биологическую очистку воды в аэротенках-отстойниках со струйной аэрацией;
 - доочистку на фильтрах с плавающей пенополистирольной загрузкой.

Предлагаемая принципиальная схема установки регенерации загрязненных вод для рыбоперерабатывающих предприятий до 1000 м³ отвечает требованию администрации города с населением до 200000 + 30000 человек и при этом за счет технологического процесса повторного использования очищенной воды на 10-20 % экономит использование чистой воды и не требует дополнительных площадей.

Принцип работы предлагаемой технологической рыбоперерабатывающего комплекса города Оули состоит из того, что на первом этапе система механической фильтрации удаляет твердые частицы и крупные загрязнения, на второй стадии производится очистка загрязненной воды от органических загрязнений массой более 200 КДа методом ультрафильтрации под вакуумом на заряженных полимерных мембранах. В ходе процесса фильтрования под вакуумом, уровень сточных вод в емкости автоматически поддерживается на таком уровне, что плоскорамные мембранные модули всегда полностью покрыты Периодически, по мере концентрирования в емкости органических загрязнений до максимально возможной степени, производится сброс загрязнений в шламовый резервуар накопитель. Шлам после дальнейшего сгущения вывозится на утилизацию.

Фильтрат - высококонцентрированный раствор поваренной соли, очищенный от основной массы высокомолекулярных органических загрязнений (белков, жиров и т.п.), со сниженным в10-100 раз значением химического потребления кислорода (ХПК) подается на финишную стадию очистки. В качестве оборудования для финишной очистки мы применяем установки нанофильтрации со специально подобранными мембранами компании Filmtec, которые пропускают в фильтрат до 85% хлорида натрия, при этом задерживая сульфаты и органические загрязнения массой более 200 Дальтон. Концентрат с установки нанофильтрации возвращается в голову очистных сооружений с целью повторной очистки. Фильтрат представляет собой загрязненную воду со сниженной на 15-20% концентрацией поваренной соли и после корректировки солевого состава подается на повторное использование на участок посола рыбы. Локальная очистка сточных вод и загрязненная вода во многих случаях дешевле их полной очистки и сброса в водные объекты в соответствии с существующими требованиями ПДК, а создание систем повторного использования очищенного от органических примесей и взвешенных веществ рассола является важнейшей частью безотходного производства.

Принципиальная схема установки регенерации загрязненных вод для рыбоперерабатывающих предприятий

Предлагаемая схема предусматривает именно частично замкнутую систему очистки сточных вод рыбоперерабатывающих предприятий Локальная очистка сточных вод и загрязненная вода во многих случаях дешевле их полной очистки и сброса в водные объекты в соответствии с существующими требованиями ПДК, а создание систем повторного использования очищенного от органических примесей и взвешенных веществ рассола является важнейшей частью безотходного производства. Предлагаемая схема предусматривает именно частично замкнутую систему очистки сточных вод рыбоперерабатывающих предприятий и поэтому происходит экономия потребления чистой воды до 20% от первоначального.

Результаты очистки для повторного использование очищенной воды при работе предлагаемого варианта дают возможность выполнения Директивы ЕС по очистке сточных вод в районах с повышенной чувствительностью и показывает XПК<30, взвешенные вещества- 50 мг/л, что отвечает требованиям администрации по части показателя взвешенных веществ, а по XПК получен намного лучший результат <30 против 170 мг/дм 3 на выходе.

Таблица 2 Результаты очистки для повторного использование очищенной воды при работе предлагаемого варианта

Показатель	Отработанны й загряненная вода	После фильтраци и	После ультрафильтраци и	После нанофильтраци и	ГОСТ Загряненна я вода
рН	7.3	7.3	7.3	-	-
Азот общий, %	0.46	0.46	-	-	-
Азот аммонийный , мг/л	500	500	-	-	<30
Жиры, мг/л	120-50000		10-150	-	<45
Фосфор, мг/л	400	400	120	10	<25
Хлориды, г/ л	120-160	120-160	120-160	100-136	120-160
Сульфаты, мг/л	200	200	200	<10	<100
ХПК, мгО2/л	1000-600000	-	420	<30	<30
Взвешенные вещества, мг/л	500	50	0,1	-	-

Все эти данные показывают, что в ходе работы выполнена основная цель работы - создание условий, которые бы в минимальной степени оказывали негативное воздействие на окружающую среду с увеличением мощности предприятия до требований администрации города и выполнении Директивы ЕС по очистке сточных вод в районах с повышенной чувствительностью, требования по удалению общих фосфатов (<0.5 мг-Р/дм³).

Ключевые слова: сточные воды; БПК; рыбозавод; биофильтр.

Литература

Основы химической технологии / Под ред. проф. И. П. Мухленова. М.: Высшая школа, 1991, с. 218, с. 246-261.

Справочные материалы по курсу "Водоотведение и очистка сточных вод". – Омск: ОмГАУ, 2000. - 23 с. Яковлев С.В. Водоотведение и очистка сточных вод / С.В.Яковлев, Ю.В.Воронов. – М.: ACB, 2002. - 704 с.

Поспелов Ю. В., Ким Г. Н. «Технологические процессы, оборудование и линии рыбопререрабатывающих производств». — Владивосток 2007.г.-270