

Источники: Организация Эллен Макартур и Проект EC Nextgenwater

топливо

ЛИНЕЙНАЯ ЭКОНОМИКА

Отходы, энергия и материалы

Отходы

Ископаемое

топливо

Ископаемое

топливо

Ископаемое

топливо

Линейная экономика рациональна, когда есть много ресурсов которые можно взять и среда, которая может принять отходы

Так ли это?

70%

от всего забора воды приходится на сельскохозяйственный сектор.

60%

увеличение производства продуктов питания будет необходимо к 2050 году, чтобы не отставать отпотребностей растущего населения.

Источкики: веб-страница ЦУР ООН

55%

увеличение мирового спроса на воду к 2050 году, в основном в городах.

воду в производственном секторе к 2050 году (по сравнению с базовым уровнем 2000 года).

15%

от забора пресной воды в мире приходится на производство электроэнергии.

эксплуатации водопроводных и канализационных систем приходится на потребление энергии.

ежегодные потери в сфере экосистемных услуг из-за загрязнения и изменения в землепользовании

экосистемных сервисов для мировой экономики в 2011 г.

Источники: Проект EC Nextgenwater, Белая книга по циркулярной экономике

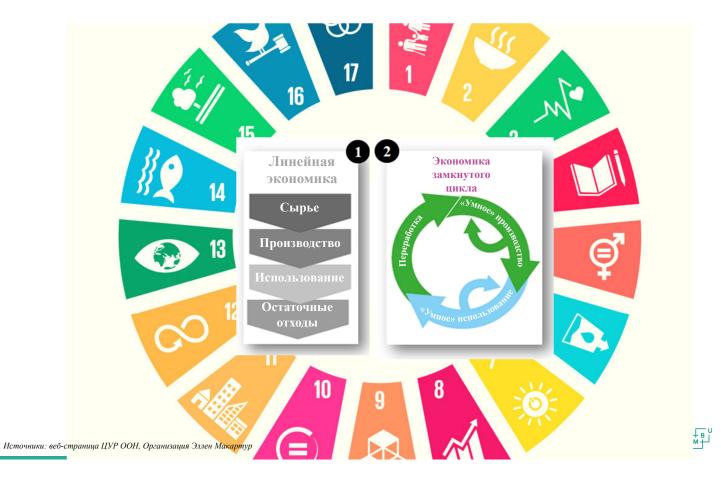
Положить конец голоду, добиться продовольственной безопасности... Обеспечение здорового

Энергия

образа жизни

Борьба с изменениями климата и его последствиями

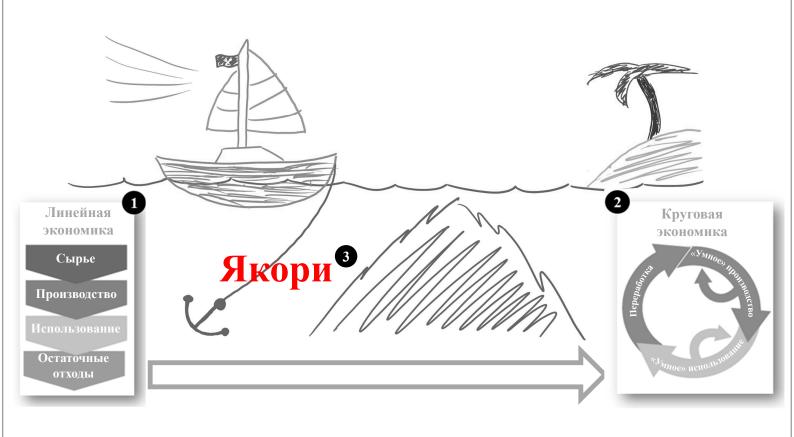
> Вместительные и надежные города

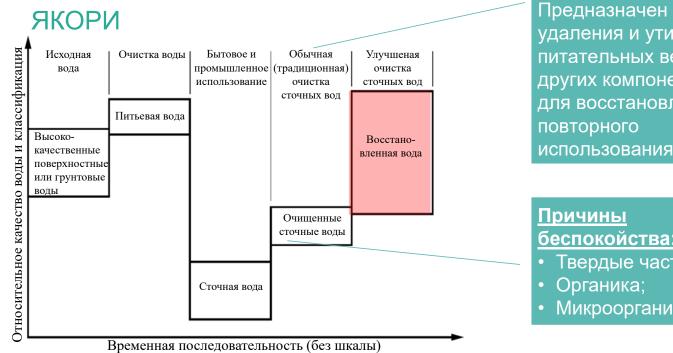

Обеспечение доступности и устойчивого управления водными ресурсами, а так же санитарных систем для

всех людей

Линейная экономика неустойчива

ЭКОНОМИКА ЗАМКНУТОГО ЦИКЛА




9

Что это значит для водного сектора?

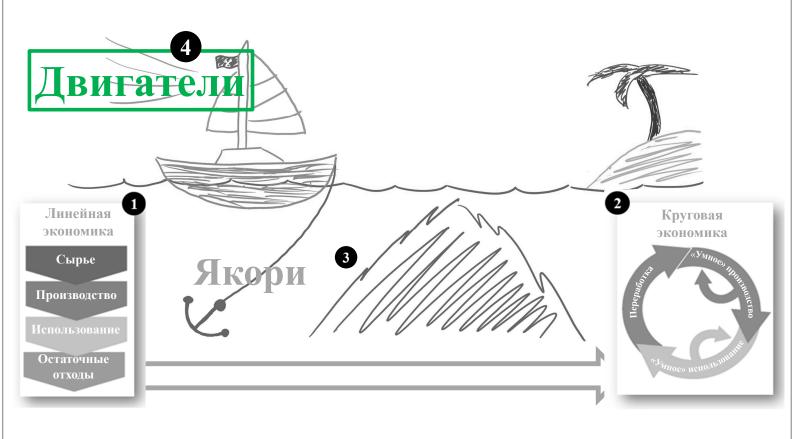
Предназначен для удаления и утилизации питательных веществ и других компонентов, не для восстановления и

беспокойства:

- Твердые частицы;
- Микроорганизмы...

Источники: S.Judd, The MBR book

Номативные тербования, экономика, общественное мнение



ЯКОРИ: Причины беспокойства

ДВИГАТЕЛИ

Политика

Бизнес

Аналитические онлайнинструменты и быстрый мониторинг
→ Оцифрование

Комбинированные

Методы очистки сточных вод:

- Биологические
- Физические: напр. мембранные методы
- Химические: напр. улучшеный процес оксиления
- Основанные на природных процессах

Предварительная обработка

Главная обработка

Постобработка

От удаления загрязнений до восстановления ресурсов

Передовые методы и технологии

Credits: UN Water, WWDR 2017

СТОЧНЫЕ ВОДЫ: недооцененный ресурс, им 2017

Сточные воды

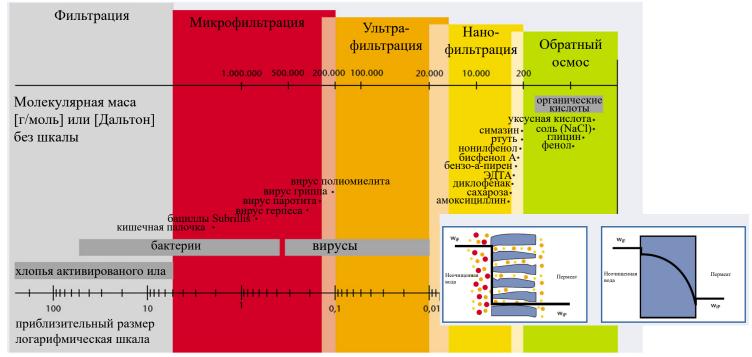
Повторное использование воды

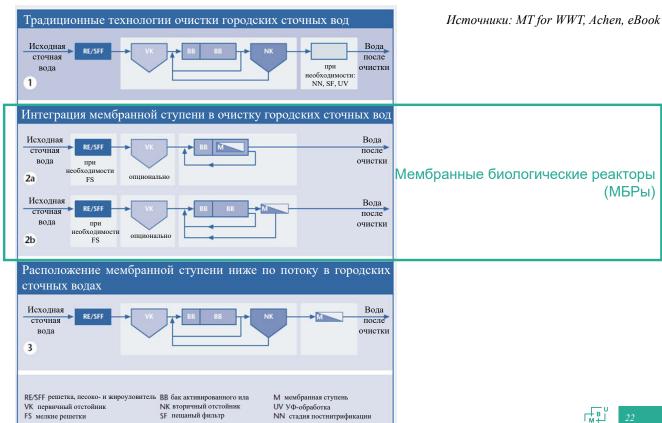
Другие ценные вещества Повторное использование питательных веществ

Повторное использование органических веществ

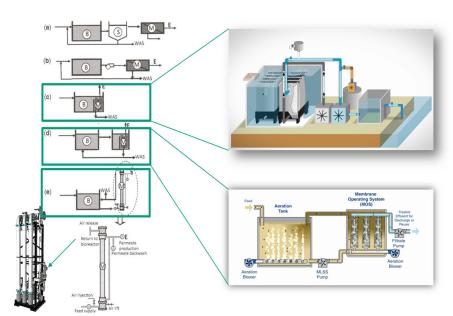
Энергия

ПОВТОРНОЕ ИСПОЛЬЗОВАНИЕ ВОДЫ


Методы получения восококачественной воды для повторного использования


6 - Ультрафиолет

МЕМБРАННЫЕ МЕТОДЫ **Интеграция**

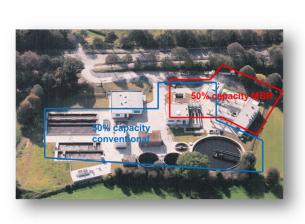

МЕМБРАННЫЕ МЕТОДЫ: обзор

Цены на мембраны упали на 80% с 1990 года, а энергоэффективность повысилась.

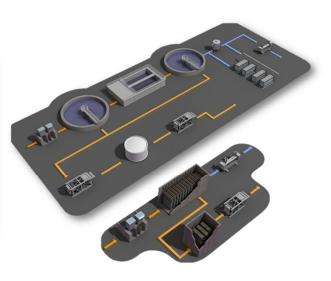
МЕМБРАННЫЕ БИОЛОГИЧЕСКИЕ РЕАКТОРЫ: Плюсы и минусы

	AS^3	MBR ⁴
MLSS ¹ , g/L	< 5	< 20
SS ² , mg/L	10-15	< 0,1
XΠK, mg/L	40-50	< 30
Микробиологическое качество	Тревожное	Пригодно для купания
Потребление энергии, $\kappa B_{T^{\mathbf{q}}} /_{\mathbf{M}^3}$	0,2-0,4	0,7-1,5

- 1- MLSS Взвешенные твердые частицы смешаного раствора
- 2- SS Взвешеные частицы
- 3- AS Активированый ил
- 4- MBR Мембранный биореактор



23

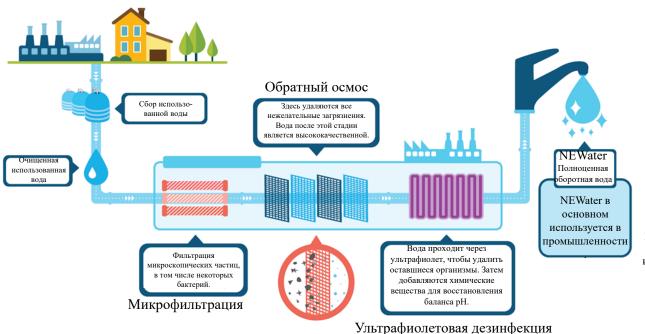

Источники: Microdyn Nadir, BioCel MBR MBR: Технология и применение, Н. Lee

МЕМБРАННЫЕ БИОЛОГИЧЕСКИЕ РЕАКТОРЫ: СЛЕД (РАЗМЕРЫ СИСТЕМЫ)

Повышение мощности

Новая система

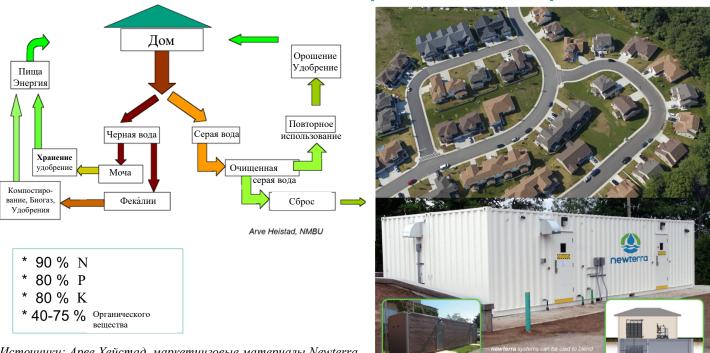
Источники: Microdyn Nadir, BioCel MBR MBR: Технология и применение, Н. Lee



МЕМБРАННЫЙ АЭРАЦИОННЫЙ РЕАКТОР БИОПЛЕНКИ (МАРБ)

- 1. МАРБ создает среду для поддержки очень устойчивой биопленки, которая может выдерживать гидравлические удары и технологические сбои.
- 2. Биопленка поглощает и потребляет загрязнители на основе углерода и азота.

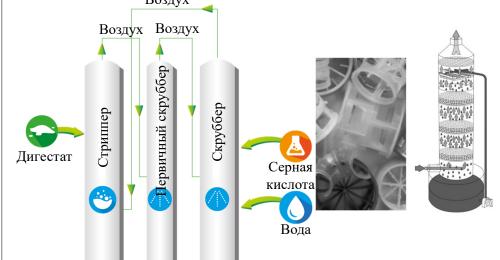
ПРИМЕР ИЗ ПРАКТИКИ: Сингапур


В засушливые периоды NE Water добавляется в резервуары для смешивания с исходной водой.

Source: Courtesy of Singapore's National Water Agency (PUB).

2

ПРИМЕР ИЗ ПРАКТИКИ: Децентрализованное применения


Источники: Арве Хейстад, маркетинговые материалы Newterra, онлайн

ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА

МЕТОДЫ ИЗВЛЕЧЕНИЯ СОЕДИНЕНИЙ АЗОТА И ФОСФОРА

ВОССТАНОВЛЕНИЕ АМИАКА: Отдувка

$$NH_4^+$$
 (l) $+$ OH^- (l) $\leftrightarrow NH_3$ (g) $+$ H_2O (l)

Сульфат аммония

- Проверенная технология, уже широко используется
- Простой процесс и дизайн
- След (розмеры)
- Накипь и обрастание
- Температурное влияние

чые технологии очистки сточных вод и восстановления ресурсов, J.Lema, S.Suarez

Другая модификация:

паровая очистка

29

ВОССТАНОВЛЕНИЕ АМИАКА: Мембранные процессы

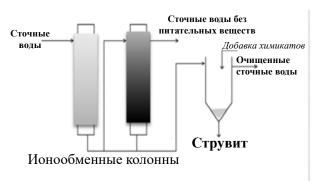
Контакторы с полыми волоконными мембранами

Вакуум (опционально)

Дигестат с низким содержанием азота

Применимо для децентрализованых систем

Источники: 3M LiqTech webpage


- Загрязниение мембраны, периодическая замена мембраны
- Требуется система контроля
- **Без химикатов**
- 95% очистка

ВОССТАНОВЛЕНИЕ ФОСФОРА: Струвит

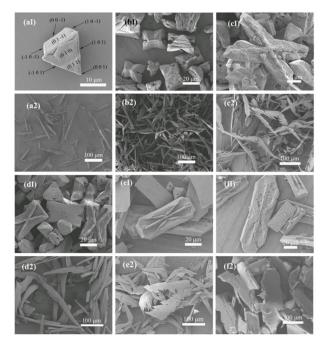
$$Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \leftrightarrow MgNH_4PO_4 \cdot 6H_2O$$

зарождение и рост кристаллов

Ионный обмен

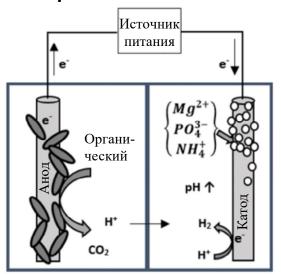
Реакторы с мешалкой

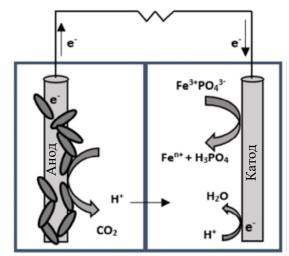
Источники: Инновационные технологии очистки сточных вод и восстановления ресурсов, J.Lema, S.Suarez


3

ВОССТАНОВЛЕНИЕ ФОСФОРА: Био-струвит

Биоминерализация


как побочный продукт метаболизма определенных бактерий которые можно часто найти в окружающей среде напр. Brevibacterium antiquum


- Кинетика
- Контроль процесса и качества продукции

ВОССТАНОВЛЕНИЕ ФОСФОРА: Струвит

Био-электрохимическое восстановление

Микробный топливный элемент

ВОССТАНОВЛЕНИЕ ФОСФОРА: Другие химические формы

Калий-струвит $MgKPO_4 \cdot 6H_2O_2$

Фосфат кальция и гидроксиапатит

$$3PO_4^{3-} + 5Ca^{2+} + OH^- \rightarrow Ca_5(PO_4)_3OH$$

- Добавление кальция к ионообменным регенерантам или рассолам
- Низкоэнергетический процесс
- Очень хорошая очистка от Р (до 90%) и высокое качество продукции
- Небольшой след
- Нуждается в добавление кислоты для удаления щелочи
- Нуждается в добавление химикатов (кальция)

3.

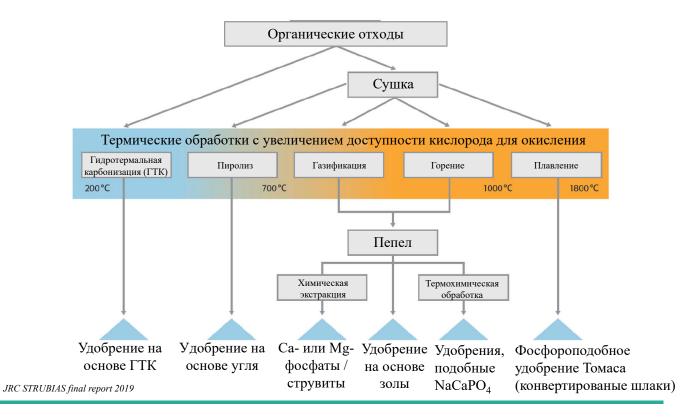
ВОССТАНОВЛЕНИЕ ФОСФОРА: СТРУБИАС

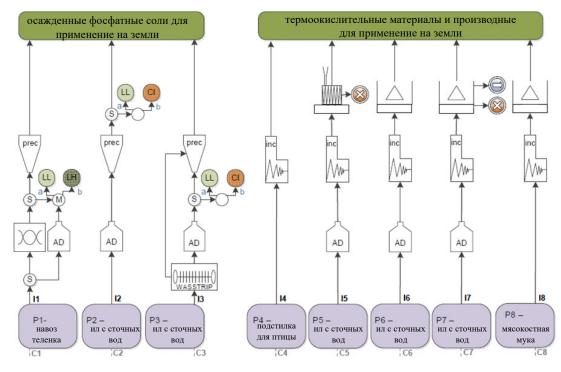
JRC SCIENCE FOR POLICY REPORT

Technical proposals for selected new fertilising materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009)

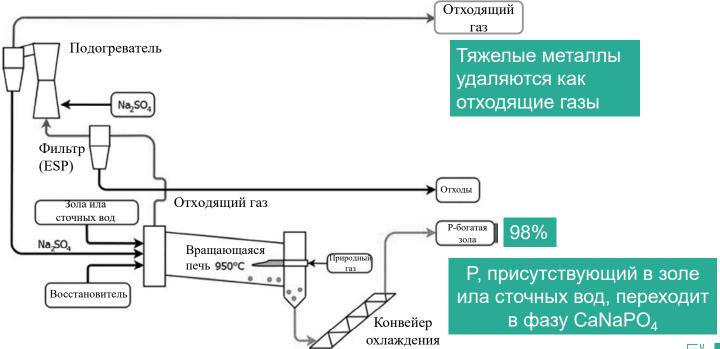
> Process and quality criteria, and assessment of environmental and market impacts for precipitated phosphate salts & derivates, thermal oxidation materials & derivates and pyrolysis & gasification materials

Huygens D, Saveyn HGM, Tonini D, Eder P, Delgado Sancho L


2019


- •Материалы компонентов
- •Технические предложения
- •Возможная дополнительная стоимость
- •Объем и названия материала кандидата
- •Риски утилизации загрязнителей
- •Система менеджмента качества
- •Рыночный спрос и торговля
- Управление ресурсами и охрана здоровья и окружающей среды
- •Экономические выгоды и проблемы

ВОССТАНОВЛЕНИЕ ФОСФОРА: СТРУБИАС



ВОССТАНОВЛЕНИЕ ФОСФОРА: СТРУБИАС

ВОССТАНОВЛЕНИЕ ФОСФОРА: Осадок золы

Источники: Инновационные технологии очистки сточных вод и восстановления ресурсов, J.Lema, S.Suarez

39

ВОССТАНОВЛЕНИЕ ФОСФОРА: ЕВРОПЕЙСКАЯ ПЛАТФОРМА УСТОЙЧИВОГО РАЗВИТИЯ

P European Sustainable Phosphorus Platform

• Швейцария:

2016: Р-восстановление обязательно к 2026 году (сточные воды, побочные продукты животного происхождения)

• Германия:

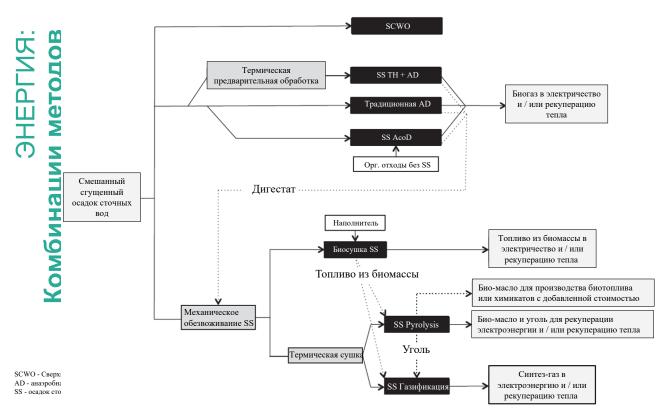
2017: Р-восстановление обязательно в течение 12/15 лет (все очистные сооружения сточных вод $> 50\,000\,$ п. е., если осадок сточных вод P>2% CB)

- XEЛКОМ: Стратегия переработки питательных веществ до 2020 г.
- Швения:
 - 2018: Правительство начало "расследование" постановления о переработке фосфора

Government Offices of Sweden

Источник: ESPP presentation at LinkedIn

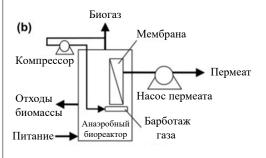
ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА: Итоги


- Во многих из этих процессов используются химические вещества, реагенты и методы, которые обычно используются в химической промышленности, поэтому требуются определенные активы.
- Количество установок по извлечению питательных веществ во всем мире быстро растет, поскольку технологические достижения происходят быстрыми темпами.
- Тем не менее, по-прежнему существует важная задача сделать эти процессы экономически целесообразными.

41

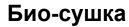
ЭНЕРГИЯ

Методы получения энергии в процессах очистки сточных вод

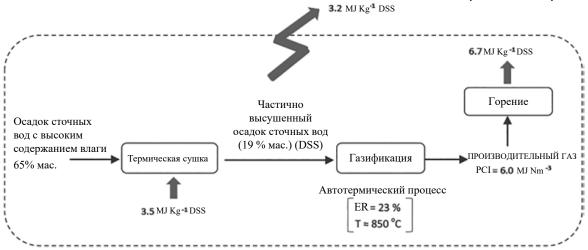


 $\it Источники: Инновационные технологии очистки сточных вод и восстановления ре сурсов, <math>\it J.Lema, S.Suarez$

АНАЭРОБНЫЕ МЕМБРАННЫЕ БИОЛОГИЧЕСКИЕ РЕАКТОРЫ



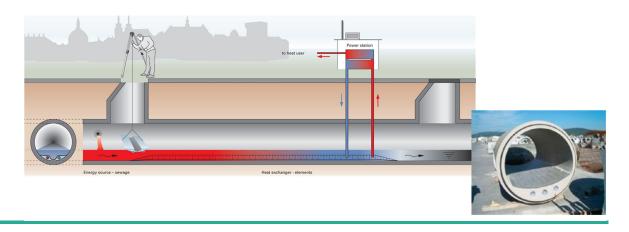
- Не требуется выращивать бактерии в гранулах → сокращает время запуска биореактора
- Флотация растворенного воздуха (ФРВ) как стадия предварительной обработки не требуется в анаэробном МБР
- Во многих случаях дополнительная последующая обработка не требуется
- Увеличивается восстановление биогаза Поскольку на этапах предварительной очистки «теряется» меньше органических материалов, из тех же сточных вод можно производить больше биогаза.
- Повышение качества сточных вод


, H

ДРУГИЕ МЕТОДЫ

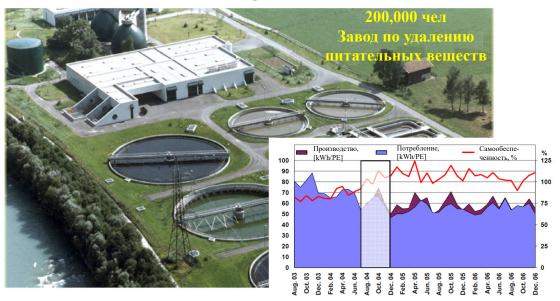
На термической основе

Газификация, Пиролиз…


- Более высокие капитальные затраты
- Этап газоочистки
- Со-субстраты

Источники: Инновационные технологии очистки сточных вод и восстановления ресурсов, J.Lema, S.Suarez

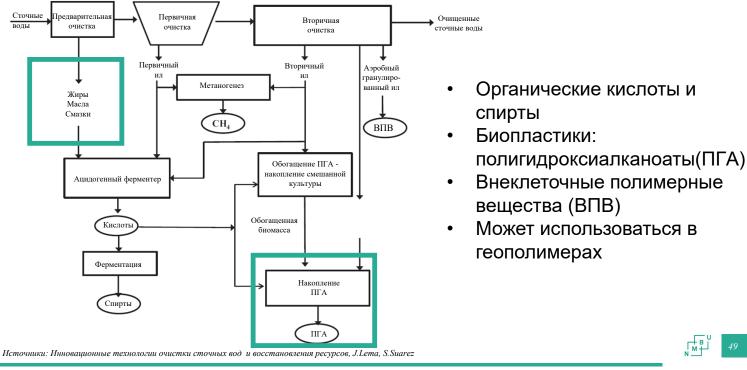
РЕКУПЕРАЦИЯ ЭНЕРГИИ ИЗ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ ВЫСОКОГО ДАВЛЕНИЯ


• Zeropex из Норвегии: Технология Difgen: система понижения давления, вырабатывающая электрическую энергию за счет падения давления в жидкостях. Используемый вместо традиционного редукционного клапана (PRV), он сочетает в себе регулирование давления с помощью дроссельных заслонок и выработку электроэнергии с помощью гидротурбин.

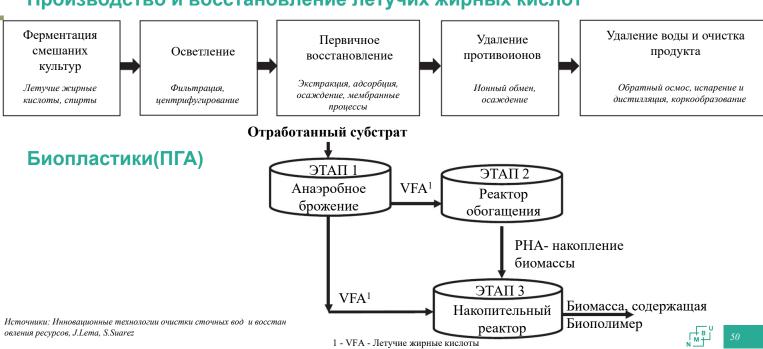
4

ЭНЕРГЕТИЧЕСКАЯ САМООБЕСПЕЧЕННОСТЬ

Станция очистки сточных вод Starss, Австрия


8% в национальную сеть

ОРГАНИКА


Методы извлечения органических продуктов

ЧТО И ГДЕ МОЖЕТ БЫТЬ ИЗВЛЕЧЕНО?

МЕТОДЫ

Производство и восстановление летучих жирных кислот

5.

ОРГАНИКА: Итоги

- На данный момент отсутствуют данные об экологическом, экономическом и техническом воздействии систем производства биополимеров из сточных вод.
- Технологии, основанные на этих процессах, являются **новыми**, и нет доступных применений промышленного масштаба для получения этих данных.

ДРУГИЕ ЦЕННЫЕ ВЕЩЕСТВАМетоды восстановления металлов

ЧТО И ГДЕ МОЖЕТ БЫТЬ ВОССТАНОВЛЕНО?

Тип осадка	Zn	Cr	Cu	Ni	Pb	Fe	Mn	Reference	ces	
Анаэробно сбро осадок	оженный	663	255	622	57	72200	nil	Wong et (2004)	al.	
Анаэробный ост вод	адок сточных	nil	300	200	180	nil	400	Lombard et al. (20		
Анаэробно сбро осадок	эженный	181	256	47	88	64400	nil	Wong et (2002)	al.	
Анаэробно сбро осадок сточных		79.2 128	153 111	nil	nil	nil	nil	Gu <i>et al.</i> (2004)		
Анаэробно сбро осадок сточных		85.6	Металл	соде	еднее	Максима. содержа	ние	Осадок, тонна с.в. /	Относительный потенциал годовой прибыли на основе	Относительный годовой потенциал прибыли,
Осадок сточных	х вод	nil			ов Mg / кг вещества	металла N с.в.	1g / кг	год	среднего содержания металла и средней цены (в долл. США) на металл (в	основанный на максимальном содержании металла и
Кожевенный шл	пам	nil							течение 2005-2015 гг.)	наивысшей цене на металл (\$) (в течение 2005-2015 гг.)
Осадок сточных	х вод	nil	Cu		285	10:	50	8580	18,706	108,966
Навоз свиней		10.3	Ni		29		66	8580	7962	29,446
			Al	16	,885	30,5	00	8580	314,946	2,170,740
Анаэробный ил		10.4	Zn		910	23	30	8580	23,540	88,761
Свиной навоз		10.41	Ag		7		80	8580	45,516	1,162,272
Свинои павоз		10.41			~		~ . ~	(2013)		
Осадок сточных	х вод	nil	545.6	nil	133	nil	nil	Zhu <i>et al.</i> (2013)		BV

Источники. ұлнновиционные технологии очистки сточных воо и восстановления ресурсов, *э.* Lema, S.Suarez

МЕТОДЫ

Химическое выщелачивание - кислоты

Осаждение Адсорбция

Биовыщелачивание

$$\mathrm{Fe^{2+}} + \mathrm{H^+} + \mathrm{O_2} \ (\mathrm{bacteria}) \rightarrow \mathrm{Fe^{3+}} + \mathrm{H_2O}$$

$$Metal-X + Fe^{3+} \rightarrow M^{2+} + Fe^{2+}$$

Metal-S +
$$O_2$$
 (bacteria) \rightarrow M^{2+} +S O_2

$$Metal\text{-O} + 2H^+ + SO_4^{\ 2-} \rightarrow Me^+ + SO_4^{\ 2-} + H_2O$$

$$S^0 + O_2 + H_2O$$
 (Bacteria) $\rightarrow H^+ + SO_4^{2-}$

Разделение металлов

- Жидкостно-жидкостная экстракция
- Электродиализ
- Мембранная фильтрация

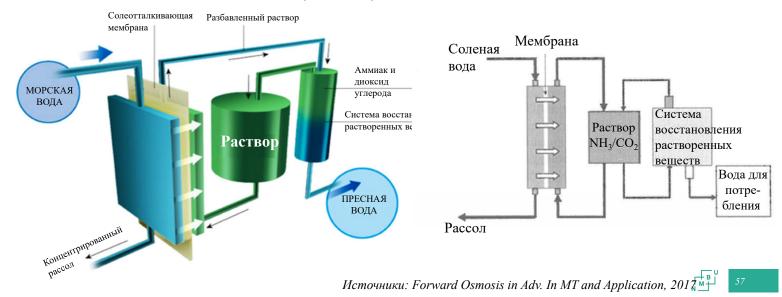
Восстановление металлов

- Электролитический (электролиз)
- Биоэлектрохимические методы

_

ВОССТАНОВЛЕНИЕ МЕТАЛЛОВ: Итоги

- Наиболее экономичные металлы, извлекаемые из осадка: (1) Al (2) Ag (3) Cu (4) Zn (5) Ni
- Годовой доход по AI, не принимая во внимание эксплуатационные расходы и при условии полного восстановления составляет 2,170,740 \$
- Существующие методы сложны и основаны на выщелачивании (химическом или биологическом), разделении металлов и извлечении металлов.



55

ДРУГИЕ МЕТОДЫ

ПРЯМОЙ ОСМОС

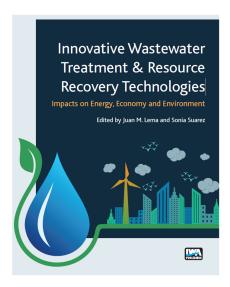
Мембраны ПО также исследуются в сочетании с другими технологиями, такими как использование в МБР, использование с мембранной дистилляцией и в сочетании с биоэлектрохимическими системами, которые используют микробные взаимодействия для достижения восстановления биоэнергии из органических соединений.

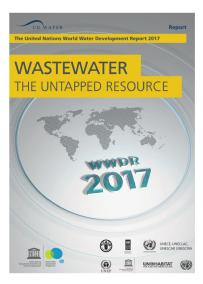
ЕСТЕСТВЕННЫЕ (ПРИРОДНЫЕ) МЕТОДЫ (NBS)

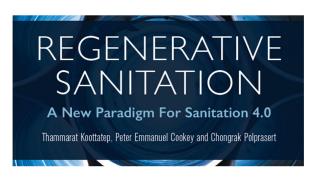
1 θρομ	ų-i yoka	водосток				
Источники: UN Water, WWDR 2019						
6.4 Существенно повысить эффективность водопользования во всех	Очень высокий	NBS, которые улучшают доступность воды в почве для богарных культур (например, ресурсосберегающее земледелие и т. д.)	Очень высокий 6.1, 6.3, 6.6			
секторах и обеспечить устойчивое потребление и снабжение пресной водой для решения проблемы нехватки воды и значительного сокращения числа людей, страдающих от нехватки воды.	Высокий	Сбор воды, совместное использование подземных и поверхностных вод, усиление пополнения запасов подземных вод за счет улучшения землепользования, городская зеленая инфраструктура (например, проницаемые тротуары, устойчивая городская дренажная система)	Высокий 6,1, 6,3, 6,6	JBJ 58		

ЕСТЕСТВЕННЫЕ (ПРИРОДНЫЕ) МЕТОДЫ

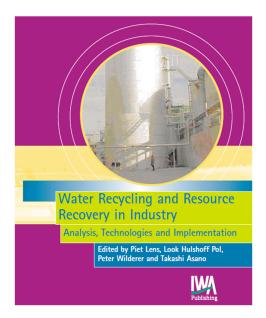
Построенные водно-болотные угодья


Сточные воды обрабатывают с помощью комбинации биологических и физических механизмов, в том числе седиментации, фильтрации, биологической деградации, адсорбции и осаждения.


Они способны на выходе производить воду подходящего качества для защиты окружающей среды, для орошения, а также для различных городских нужд.



ЛИТЕРАТУРА




61

ЛИТЕРАТУРА

Global Trends & Challenges in Water Science, Research and Management

