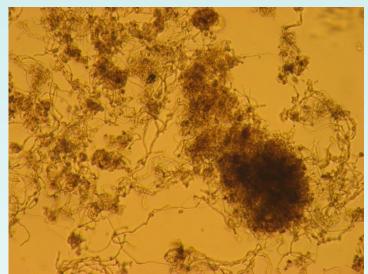
Совершенствование технологии бирлогической очистки городских сточных вод от соединений азота и фосфора (теория и практика)

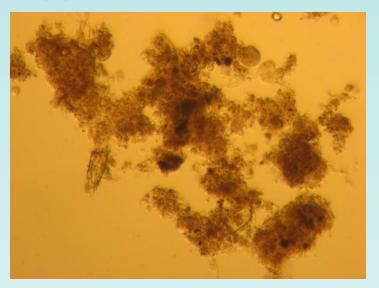
Раиса Маркевич доцент кафедры биотехнологии и биоэкологии Белорусский государственный технологический университет г. Минск, Беларусь г. Аас, Норвегия Семинар «Водная Гармония-II»

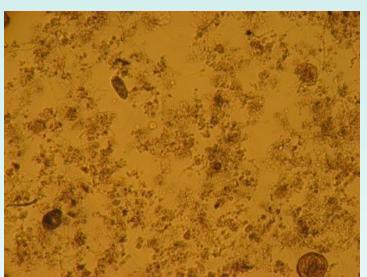
Преимущества биологической очистки сточных вод

- Широкий спектр удаляемых загрязнений, в том числе токсичных;
- Образование простых конечных продуктов;


 Отсутствие вторичного загрязнения воды

Особенность биологической очистки сточных вод


Строгое соблюдение технологических параметров

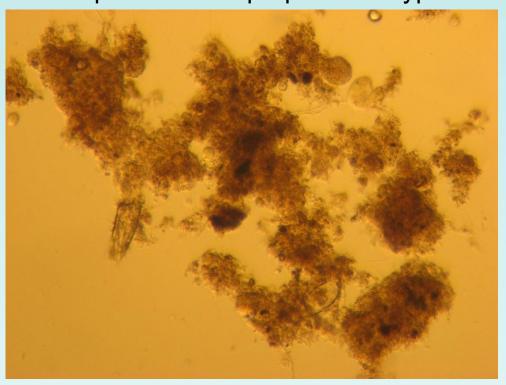

- температура;
- pH;
- отсутствие токсичных компонентов в концентрациях, ингибирующих жизнедеятельность микроорганизмов;
- наличие биогенных элементов;
- концентрация растворенного кислорода

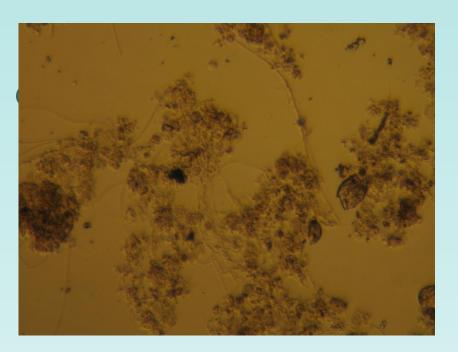
и т.д.)

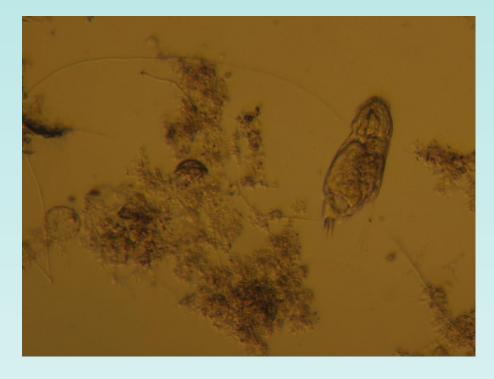
Нитчатое вспухание

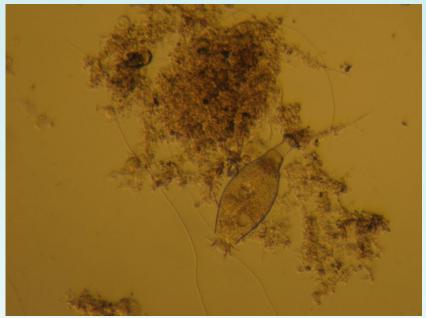
Гелевое вспухание

- Усложнение состава сточных вод (появление новых химических соединений, в том числе токсичных для активного ила);
- Увеличение содержания биогенныхэлементов (азота и фосфора)






Характеристика активного ила


Активный ил – сложный биоценоз, в состав которого входят организмы разных систематических групп, находящиеся на различных трофических уровнях

Численность микроорганизмов в иловой смеси составляет 10¹⁰–10¹¹ кл/мл

Организмы активного ила Увеличение в 100 раз

Последовательная смена популяций при развитии биоценоза активного ила

Диспергированные бактерии Нитчатые формы бактерий Зооглейные скопления Бесцветные жгутиковые Мелкие голые амебы Мелкие раковинные амебы Крупные раковинные амебы

На каждом очистном сооружении формируется свой, специфический биоценоз активного ила

Уровень развития биоценоза активного ила и его **деструкционный потенциал** зависят от трех основных факторов:

- состав сточных вод (уровень загрязнения по органическим веществам, наличие биогенных элементов, присутствие токсичных веществ и др.);
- конструкция очистных сооружений (эффективность осветления воды в первичных отстойниках, гидродинамическая обстановка в аэротенке, наличие и степень регенерации активного ила и др.);
- режим эксплуатации сооружений (нагрузка по загрязнениям, обеспеченность кислородом, доза и возраст ила и др.).

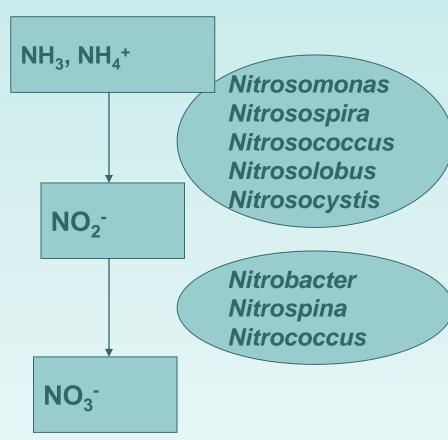
Глубокая очистка сточных вод от биогенных элементов

N 20–50 мг/дм³ Р 5–12 мг/дм³ СВ активного ила: N 6–8 % Р 2-3 %

Основные *источники* поступления биогенных элементов в природные водоемы:

- объекты сельского хозяйства по причине его интенсификации и химизации;
- промышленные предприятия, в сточных водах которых повышенное содержание азота и фосфора (мясокомбинаты, молокозаводы и др.);
- бытовые сточные воды, содержащие моющие средства, в составе которые находится до 30–50% полифосфатов, а также азоти фосфорсодержащие продукты жизнедеятельности людей и животных (мочевина, мочевая кислота, нуклеиновые кислоты, нуклеопротеиды и др.).

Превращения соединений азота


Аммонификация Мочевая кислота. Нуклеиновые Белки мочевина кислоты Протеазы Нуклеазы **Уреазы** (Mycobacterium, (Proteus vulgaris, Micrococcus urea, Pseudomonas, Corynebacterium, Sarcina urea Nocardia) Bacillus, Clostridium) NH₄+, CO₂, H₂O

Потребление восстановленных соединений азота

Ассимиляционный процесс

Диссимиляционный процесс (нитрификация)

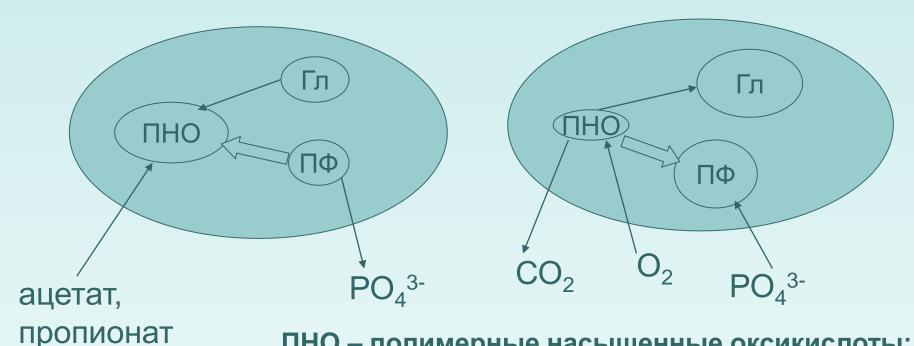
Условия нитрификации

- Низкая нагрузка на активный ил
- Высокий уровень аэрации
- Удовлетворительный режим удаления ила из вторичных отстойников
- Возраст активного ила не менее 4–5 сут.
- Оптимальные значения температуры 15–35°C, pH 7,2–8,6.

Нитратредукция

Ассимиляционный процесс Диссимиляционный процесс (денитрификация)

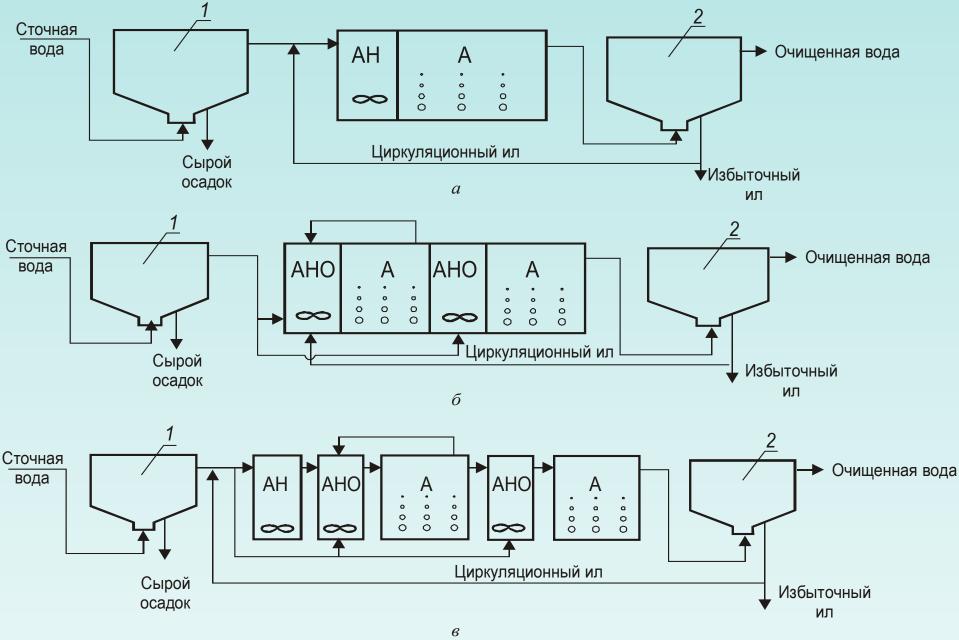
Условия денитрификации

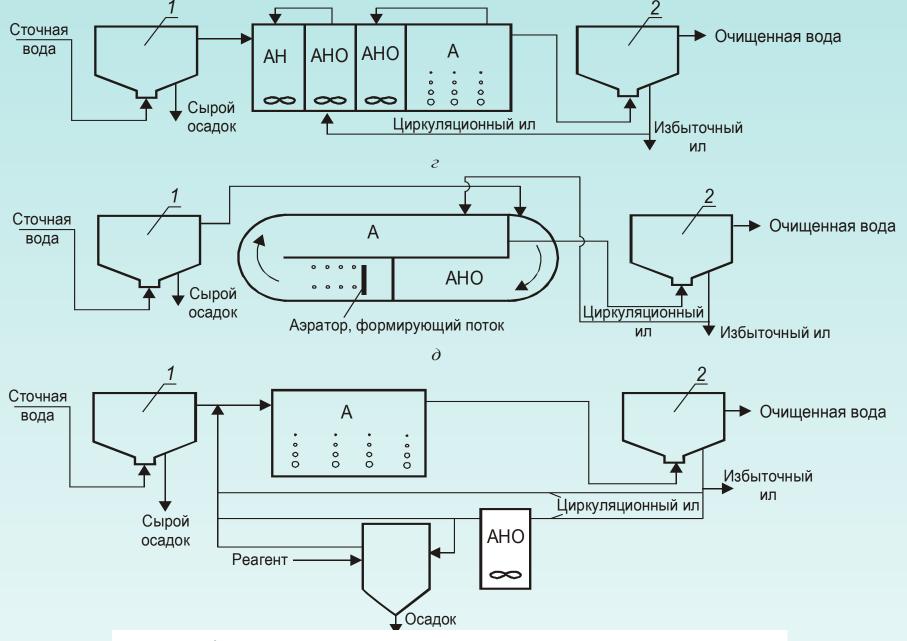

- Содержание растворенного кислорода менее 1 мг/дм³;
- Содержание нитратов в очищенной воде более 5–8 мг/дм³;
- Температура воды 16–25°С.

Значения нитрификационного и денитрификационного потенциала сточных вод

Соотношение содержания БПК ₅ и общего азота в сточных водах после первичных отстойников, БПК ₅ / общ. азот	Потенциал	
	Нитрификационный (норма от 0,5 — не более 6,5)	Денитрификационный (норма не менее 3,5 до 8,0)
90,0 / 25,1 = 3,58	Хороший	У довлетворительный
110,0 / 22,0 = 5,0	Оптимальный	Оптимальный
116,0 / 18,7 = 6,2	Удовлетворительный	Хороший
118,0 / 23,0 = 5,1	Оптимальный	Оптимальный
160,0 / 22,4 = 7,4	Плохой	Отличный

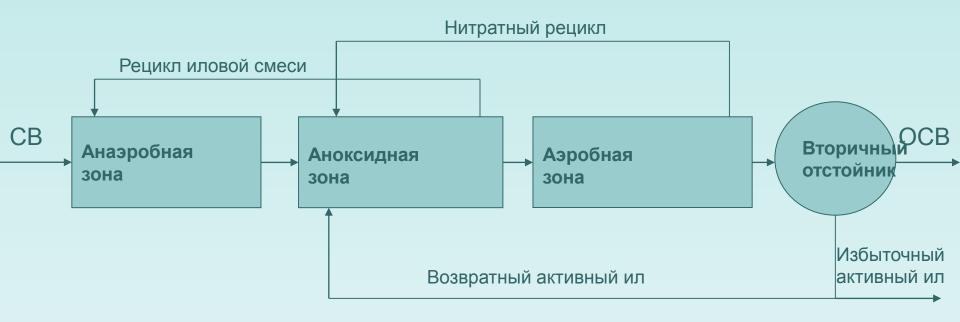
Схема превращений соединений фосфора


Анаэробные условия
 ФАО
 Аэробные условия
 ФАО


ПНО – полимерные насыщенные оксикислоты; Гл – гликоген; ПФ -- полифосфаты

Условия для биологического удаления фосфора

- Наличие легкоусвояемого субстрата;
- Отсутствие нитрата в анаэробной фазе (конкуренция с денитрификаторами за субстрат);
- Чередование анаэробных и аэробных условий.

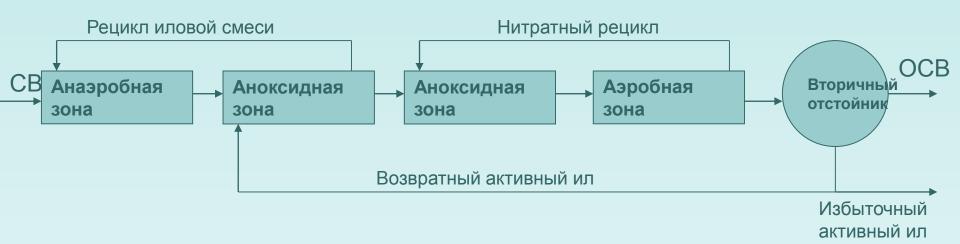


- а схема для удаления азота и фосфора на высоконагружаемых сооружениях;
- 6 схема для удаления азота и фосфора на низконагружаемых сооружениях;
- в модификация схемы б с дополнительной анаэробной стадией;

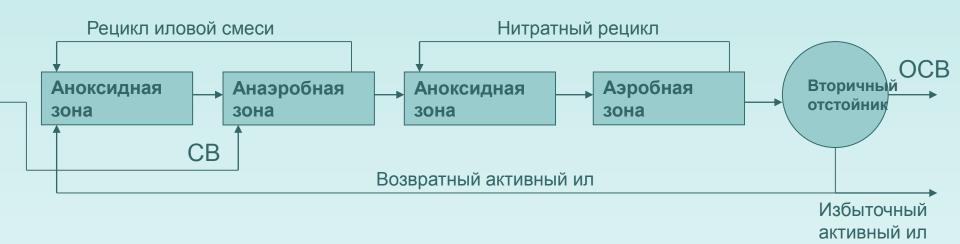
- *г* модификация схемы *в* с тремя рециркулирующими потоками;
- ∂ схема с оксидационным каналом;
- е схема с дополнительным реагентным удалением фосфора

Технологическая схема Кейптаунского университета (UCT)

БПК: Робщ – 20:1 – 25:1


БПК: **N**общ – 2:1 – 3:1

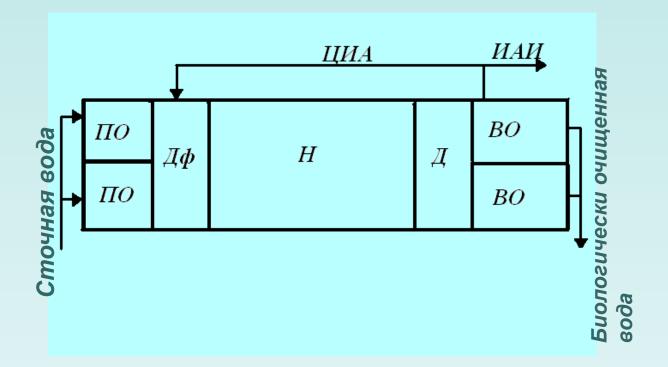
Если соотношение <


Недостаток ЛЖК, не эффективное удаление фосфора

Недостаточно полная нитрификация

Модифицированная технологическая схема Кейптаунского университета (MUCT)

Модифицированная технологическая схема Ганноверского университета (MISAN)



Биореактор Минской очистной станции (МОС-2)

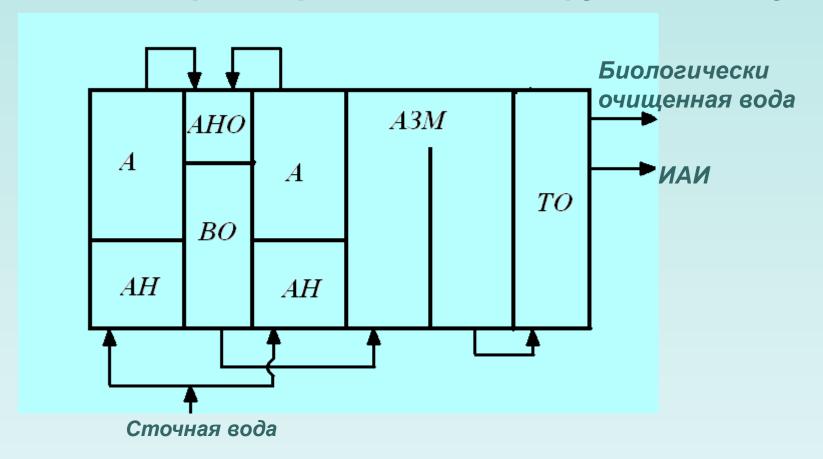

АнР – анаэробный резервуар; Н1, Н2, Н3 – нитрификаторы; Д1, Д2, Д3 – денитрификаторы; 1, 2 – места отбора проб

Схема биореактора очистных сооружений г. Воложин

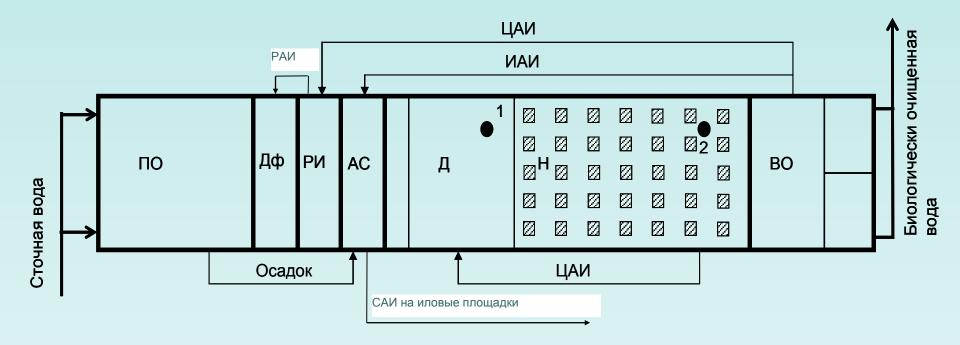

ПО – первичный отстойник; Дф – дефосфотатор; Д – денитрификатор; Н – нитрификатор; ВО – вторичный отстойник; ЦАИ – циркулирующий АИ; ИАИ – избыточный АИ;

Схема биореактора очистных сооружений г. Глуск

А – аэробная зона; АН – анаэробная зона; АНО – аноксидная зона; ВО – вторичный отстойник; АЗМ – аэротенк с затопленной загрузкой; ТО – третичный отстойник; ЦАИ – циркулирующий АИ; ИАИ – избыточный АИ;

Схема технологической линии блока очистных сооружений г. Ивацевичи

ПО – первичный отстойник; Дф – дефосфотатор; РИ – регенератор ила АС – аэробный стабилизатор; Д – денитрификатор; Н – нитрификатор; ВО – вторичный отстойник; ЦАИ – циркулирующий АИ;

ИАИ – избыточный АИ; РАИ – регенерированный АИ;

САИ – стабилизированный АИ; 1, 2 – места отбора проб

Автотрофное аноксидное окисление аммония (деаммонификация)

- частичная нитрификация, в ходе которой часть аммонийного азота окисляется до нитрита:

$$NH_4^+ + 1,5O_2 \rightarrow NO_2^- + 2H^+ + H_2O$$

– собственно аноксидное окисление оставшегося аммонийного азота нитритом до молекулярного азота, которое выполняет специфический консорциум автотрофных бактерий:

$$NH_4^+ + 1,32NO_2^- + 0,066 HCO_3^- + 0,13H^+ \rightarrow 1,02 N_2 + 0,26NO_3 + 0,066CH_2O_{0,5}N_{0,15} + 2,03H_2O$$

Технология DEMON® (Австрия) Технология фирмы Paques ANAMMOX® (Нидерланды)

Технологии аноксидного окисления аммония используются для очистки

- возвратных потоков после анаэробной переработки осадков и гравитационного уплотнения избыточного ила на коммунальных очистных сооружениях;
- сточных вод, в т.ч. производственных, с высоким содержанием аммония (свинокомплексы, птицефабрики, заводы по производству минеральных удобрений, металлургические заводы и др.);
- газовоздушных выбросов.

Преимущества:

- высокая эффективность (удаляется до 90% азота);
- экономичность (на единицу удаленного азота тратится на 60% меньше кислорода);
- образуется меньше избыточной биомассы;
- не требуются легкоокисляемые органические вещества.

Себестоимость удаления азота снижается в 2-3 раза.

Биоаугментация

Биоаугментация – направленное обогащение активного ила определенными группами бактерий путем создания благоприятных условий для их развития.

Дополнительный аэрируемый реактор-биоаугментаторе может быть использован для накопления бактерий-нитрификаторов.

В таком реакторе может быть предусмотрена адаптация микроорганизмов к токсикантам.

Ацидофикация осадка

Способы увеличения содержания легкоокисляемых органических веществ в поступающих на биологическую очистку сточных водах

- подача сточных вод на биологическую очистку без предварительного отстаивания;
- подача в анаэробную зону химических соединений (метанол, уксусная кислота);
- использование ацидофикации (преферментация, кислотогенез) сырого осадка в первичных отстойниках, что позволяет увеличить содержание летучих жирных кислот в поступающих на биологическую очистку сточных водах с 17–22 до 25–30 мг/дм³;
- ацидофикация в анаэробной зоне биореактора (при отсутствии перемешивания иловой смеси формируется уплотненный слой активного ила, что сопровождается преферментацией сорбированного на иле органического вещества).

Использование повышенных доз активного ила, прикрепленных микроорганизмов

Проблемы процессов совместного биологического удаления азота и фосфора

- требуется большее время пребывания сточных вод в сооружениях биологической очистки, что ведет к необходимости увеличения их объема на 20–30%;
- вследствие возрастания илового индекса должно быть увеличено количество вторичных отстойников.

Варианты решения проблем

- увеличение дозы активного ила до 4,5-6,5 мг/дм3;
- концентрирование биомассы путем комбинации в реакторах биологической очистки взвешенных и прикрепленных на инертных носителях форм микроорганизмов (в толще прикрепленной биологической пленки создаются различные кислородные условия, что обеспечивает возможность эффективного протекания в одном объеме как процессов биодеструкции органических загрязняющих веществ, так и процессов нитри-денитрификации и биологического удаления соединений фосфора).

Применение аэробного гранулированного активного ила

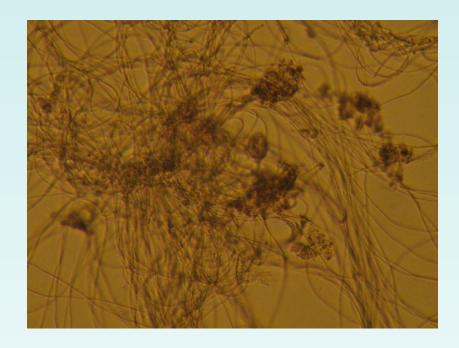
Преимущества гранулированного ила:

- облегчение разделения очищенной воды и активного ила при отстаивании;
- гранулированный активный ил более устойчив к повышенным нагрузкам по загрязняющим веществам и наличию токсичных веществ;
- уменьшение вспухаемости и пенообразования в аэротенках;
- минимальное образование избыточной биомассы и, как следствие, уменьшение энергетических затрат на обработку образующегося осадка;
- улучшение фильтрационных свойств ила при его обезвоживании;
- реализация технологий с гранулированным активным илом позволяет решать вопросы реконструкции очистных сооружений под перспективные технологии удаления биогенных элементов без увеличения существующих объемов сооружений.
- при использовании аэробного гранулированного ила возможно достижение очистки сточных вод по аммонийному азоту до 99%, фосфатам фосфора до 85%, взвешенным веществам до 95%.

Методическое руководство по контролю процесса биологической очистки городских сточных вод: учеб.-метод. пособие для студентов специальности 1-57 01 03 «Биоэкология» / Р.М. Маркевич [и др.]. – Минск: БГТУ, 2009. – 161 с.

Химический анализ

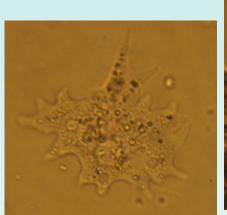
- Определение принципиальной возможности очистки сточных вод данного состава биологическими методами;
- установление наличия благоприятных условий для жизнедеятельности организмов активного ила, оценка эффективности очистки

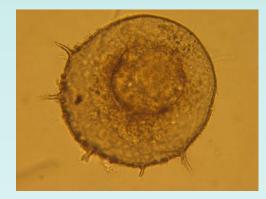

Биохимический анализ

 Оперативный контроль токсичности производственных сточных вод, поступающих на биологические очистные сооружения, установление допустимых концентраций и нагрузки

Бактериологический анализ

- Контроль санитарно-бактериологической обстановки;
- определение общей численности и морфологического разнообразия бактерий в составе хлопьев активного ила (контроль нитчатых бактерий, чрезмерное развитие которых наиболее часто является причиной вспухания активного ила, нарушения его седиментационных свойств и выноса из вторичных отстойников)

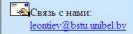



Гидробиологический анализ

 Общее количество, видовое разнообразие и физиологическое состояние организмов активного ила являются индикаторами протекающего процесса очистки. Гидробиологический анализ позволяет наиболее оперативно выявлять нарушения процесса очистки, а также делать заключения о возможных причинах

этих нарушений

На кафедре биотехнологии и биоэкологии Белорусского государственного технологического университета разработана электронная база данных «Активный ил», содержащая информацию о водных беспозвоночных животных – обитателях активного ила сооружений биологической очистки городских сточных вод Республики Беларусь

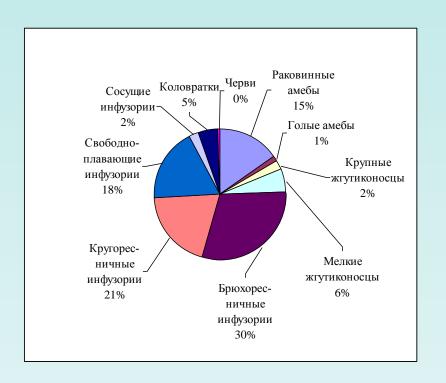

БАЗА ДАННЫХ "Активный ил"

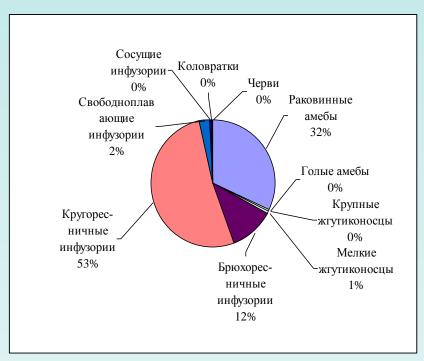
О программе

- 1. Методики
- 2.Основные термины
- 3. Определитель рода
- 4.<u>Представители</u> активного ила
- 5.Видеофрагменты
- 6.<u>Оценка качества</u>
 работы очистных
 сооружений по
 гидробиологическим
 показателям

Полезные ссылки

Онас





База данных «Активный ил» дает возможность оперативного и простого определения систематической принадлежности организмов активного ила, позволяет наглядно проследить за изменением соотношения основных индикаторных групп организмов и делает удобным хранение большого объема информации о биоценозе активного ила и его изменениях под действием различных факторов

Пример использования базы данных «Активный ил»

Распределение основных индикаторных групп организмов удовлетворительно функционирующего активного ила

БЛАГОДАРЮ ЗА ВНИМАНИЕ

