Национальный технический университет Украины «Киевский политехнический институт» им. Игоря Сикорского

Химико-технологический факультет

Твердые антискаланты для предподготовки воды в обратноосмотических технологиях

м. н. с. **Орестов Е. А.**

Научный руководитель: *д.т.н., проф.* **Митченко Т. Е.**

Необходимость в проведении исследований

Фоулинг (обрастание) мембранных элементов ОО — основная причина снижения продуктивности ОО систем и

снижения качества пермеата

Фоулинг:

- коллоидный
- органический
- биологический
- неорганический (скейлинг) СаСО₃ (~30%), CaSO₄, MgSiO₃...

Актуальность проблемы в Украине

Результаты мониторинга качества воды в Украине (2008-2014) по показателю общей жесткости

Условные обозначения:

- **Превышение норматива по ГСанПиН 2.2.4-171-10**
- **П**риближение к нормативу по ГСанПиН 2.2.4-171-10
- Оответствие нормативу по ГСанПиН 2.2.4-171-10

Высокая жесткость воды — основная причина образования отложений на поверхности мембран обратного осмоса.

Современное состояние проблемы

Основные недостатки этих методов:

- 1. Ресурсозатратность
- 2. Большие площади под оборудование
- 3. Значительные объемы минерализованных стоков
- 4. Значительная стоимость эксплуатации

- 1. Необходимость правильного выбора реагента и точного расчета дозы
- 2. Необходимость корректировки дозы при изменении состава воды
- 3. Опасность недостаточного или избыточного дозирования
- 4. Дорогое дозирующее оборудование

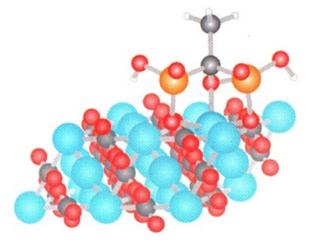
С целью устранения рассмотренных недостатков предлагается новейший и более удобный способ введения в воду реагентов: фильтрующий материал, содержащий ингибиторы скейлинга –

твердый антискалант

Цель и задачи исследования

Цель работы: изучение физико-химических основ получения новых сорбционных материалов — твердых антискалантов — для процессов обратноосмотического обессоливания и разработка технологии коррекционной обработки воды с использованием этих материалов.

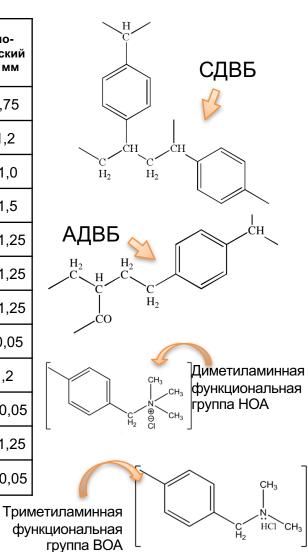
Основные задачи:


- 1. Исследовать сорбционную способность различных ионитов по отношению к фосфонатным ингибиторам скейлинга и выбрать наиболее эффективный для получения твердых антискалантов.
- 2. Изучить механизмы и ход процесса сорбции ингибиторов скейлинга избранным ионитом для установления оптимальных условий их взаимодействия.
- 3. Исследовать и обосновать оптимальные условия получения твердых антискалантов.
- 4. Исследовать процесс обработки воды для обратноосмотического обессоливания твердыми антискалантами и установить рациональные условия его проведения.
- 5. Предложить технологию коррекционной обработки воды для обратноосмотического обессоливания с помощью твердых антискалантов.

Объекты исследования. Ингибиторы скейлинга

В качестве ингибиторов скейлинга избраны фосфонатные кислоты:

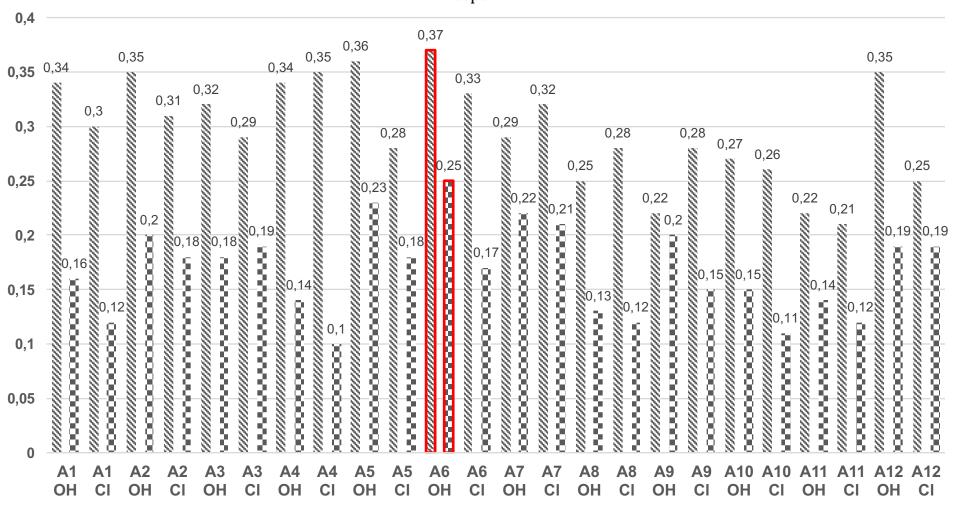
- высокоэффективные (дозировка для OO 0,5-5 мг/дм³);
- экологически безопасные (не содержат биодоступного Р, в отличие от фосфатов)
- нетоксичны


Параметр	INH1	INH2
Формула	C ₃ H ₁₂ NO ₉ P ₃	$C_2H_8O_7P_2$
Молярная масса, г/моль	299,05	206,028
Молекулярный объем, Å ³	209,2	142,75
Содержание Р _{общ} , %	31,07	30,1
Поглощение Са, мг СаСО ₃ /г	≥400	≥500
Растворимость в воде (20 °C), г/дм³	610	600
Плотность (20 °C), г/см ³	1,28-1,38	1,39-1,49


Комплекс Ca-INH1, встроенный в кристалл CaCO₃

Объекты исследования. Анионообменные смолы

Обозначен ие	Функцио- нальный тип	Природа матрицы	Тип пористой структуры	ПОЕ, г-экв/дм³	Эффективный размер гранул, мм	Коэффициент однородности	Грануло- метрический состав, мм			
A1		АДВБ	Гелевый	1,6	0,54	1,5	0,5 – 0,75			
A2				1,2	0,62	1,4	0,3 – 1,2			
A3				1,35	0,64	1,55	0,315-1,0			
A4	HOA	СДВБ			1,34	0,65	1,6	0,25 - 1,5		
A5			Макро- пористый	1,3	0,4	1,2	0,315 - 1,25			
A6				·	1,63	0,61	1,23	0,315 - 1,25		
A7				СДВБ	СДВБ	СДВБ		1,1	0,6	1,57
A8				1,1	0,68	1,1	0,64 ± 0,05			
A9	ВОА I типа	воа		1,2	0,6	1,45	0,3 - 1,2			
A10			F	1,2	0,52	1,15	0,575 ± 0,05			
A11			Гелевый	1,15	0,63	1,42	0,315 - 1,25			
A12	BOA II типа				1,3	0,49	1,1	0,575 ± 0,05		


Алгоритм проведения исследований

Результаты исследований

Исследование сорбции ингибиторов анионитами

Критерий выбора анионита – $\beta = \frac{a_{\text{десорб}}}{a_{\text{copf}}^{\text{max}}}$.

Выбранный анионит

Для получения образцов ТФА и изучения их свойств избран образец **А6 - низкоосновный СДВБ макропористый анионит**.

Этот анионит отличается:

- высоким содержанием функциональных групп (ПСОЕ), более 90% из которых низкоосновные,
- относительно равномерным гранулометрическим составом,
- высокой осмотической стабильностью,
- химической чистотой.

Параметр	Значение
·	0,315 -1,25
Фактический размер зерен, мм	
Объемная доля рабочей фракции, %	99,7
Эффективный размер зерен, мм	0,61
Коэффициент однородности	1,23
Влажность товарной формы, %	56,4
Удельный объем, см³/г	3,26
Полная статическая обменная емкость,	1,63
ммоль-экв/см ³	1,03
Статическая обменная емкость по	
высокоосновным обменным группам, ммоль-	0,101
экв/см ³	
Статическая обменная емкость по	
низкоосновным обменным группам, ммоль-	1,529
экв/см ³	
Доля низкоосновных обменных групп, %	93,81
Перманганатная окисляемость фильтрата, мг	0,04
O ₂ /дм ³	0,04
Осмотическая стабильность, %	99,3

Механизм сорбции

Определение эквивалентности обмена

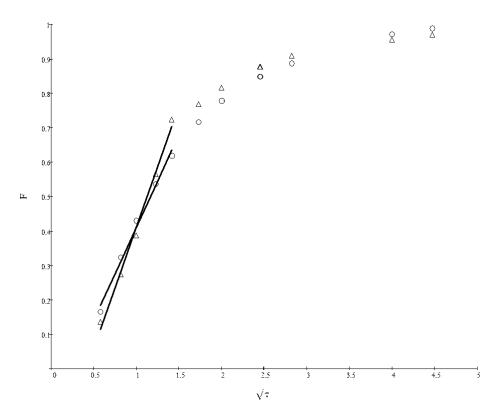
Параметр	Среднее значение
INH1	
Эквивалентность обмена А, %	96,9
Число эквивалентности	2,0
INH2	
Эквивалентность обмена А, %	96,7
Число эквивалентности	2,1

$$A_{\phi} = \frac{\left(\frac{m_{\phi}}{V_{po3}} - \frac{C_P}{V_p}\right) \cdot Z_{\phi} \cdot M_{Cl}}{M_{\phi} \cdot C_{Cl}} \cdot 100\%,$$

$$z_{\Phi} = \frac{M_{\Phi} \cdot C_{Cl} \cdot v_{p}}{M_{Cl} \cdot \left(\frac{m_{\Phi}}{v_{p}} - C_{P}\right)},$$

Сорбция сопровождается высвобождением в раствор хлорид-ионов в эквивалентных количествах, подтверждая предположение об ионообменной природе поглощения INH анионитом.

$$\begin{split} &N(CH_{2}PO_{3})_{3}H_{4}^{2-} + 2\overline{R^{+}OH^{-}} \to \overline{R_{2}N(CH_{2}PO_{3})_{3}H_{4}} + 2H_{2}O, \\ &HO(CH_{3})C(PO_{3})_{2}H_{2}^{2-} + 2\overline{R^{+}OH^{-}} \to \overline{R_{2}N(CH_{2}PO_{3})_{3}H_{2}} + 2H_{2}O. \end{split}$$


$$N(CH_{2}PO_{3})_{3}H_{4}^{2-} + 2\overline{R^{+}Cl^{-}} \rightarrow \overline{R_{2}N(CH_{2}PO_{3})_{3}H_{4}} + 2H^{+} + 2Cl^{-},$$

$$HO(CH_{3})C(PO_{3})_{2}H_{2}^{2-} + 2\overline{R^{+}Cl^{-}} \rightarrow \overline{R_{2}N(CH_{2}PO_{3})_{3}H_{2}} + 2H^{+} + 2Cl^{-}.$$

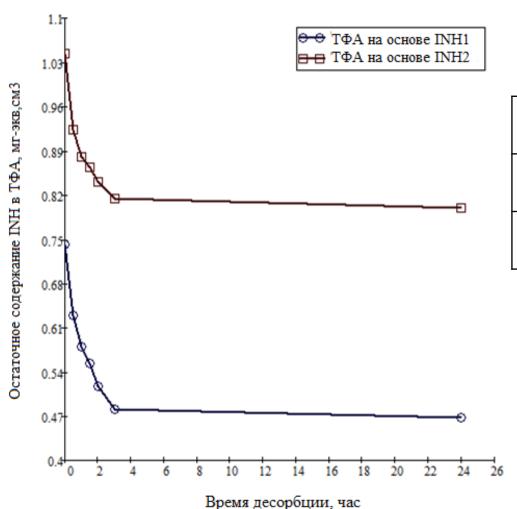
Механизм сорбции

Кинетические исследования

Кинетические кривые для INH1 (\bigcirc) и INH2 (\triangle)

Зависимость F от √т для INH1 (\bigcirc) и INH2 (\triangle)

Урованение Бойда – Адамсона


$$F_{cop6} = \frac{D \cdot \pi^2 \cdot \tau}{r^2} = B\tau \to D = \frac{r^2}{\pi^2 \cdot \tau} \cdot B\tau.$$

Результаты сорбционных исследований

Параметр	INH1	INH2	
Механизм	Ионный обмен		
Лимитирующая стадия	Внутренняя диффузия		
Коэффициент диффузии, см²/с	5,188·10-9	5,567·10-9	
Время контакта полного обмена, час	24	24	
Описание изотермы сорбции	$C_R = 0.869 \cdot C_S^{1/7,188}$	$C_R = 0.838 \cdot C_S^{1/5,829}$	
Расчетное значение ПОЕ, мг-экв/см ³	1,34	1,57	

Механизм десорбции

Кинетические исследования

	Коэффициент диффузии D·10 ¹⁰ , см ² /с
INH1	1,438
INH2	1,741

Динамические исследования процесса десорбции

Изучение влияния анионного состава воды на десорбцию INH из ТА методом ПФЭ

Выбор анионов и диапазонов их концентрации осуществлялся на основе результатов мониторинга качества питьевой воды Украины, проведенного Всеукраинским Водным Обществом «WaterNet» в течение 2010-2014 годов. База данных включала анализы воды из разных источников:

- водопроводы;

- артезианские скважины;

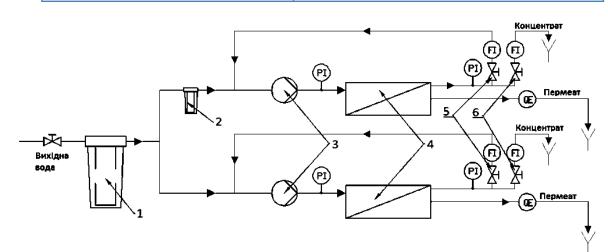
- колодцы.

	План			INH1	INH2
Nº	С SO ₄ ²⁻ , мг-экв/дм ³	С НСО ₃ -, мг-экв/дм ³	С СІ⁻, мг-экв/дм³	Ӯ, мг- экв/см³	Ÿ, мг- экв/см³
		ин экв/ди			
1	6	7,5	26	0,17	0,25
2	1	7,5	26	0,16	0,22
3	6	2,5	26	0,15	0,22
4	1	2,5	26	0,12	0,19
5	6	7,5	3	0,10	0,11
6	1	7,5	3	0,08	0,07
7	6	2,5	3	0,07	0,08
8	1	2,5	3	0,04	0,04

INH1
$$\hat{Y} = 0.112 + 0.012X_1 + 0.015X_2 + 0.04X_3$$
;
INH2 $\hat{Y} = 0.148 + 0.017X_1 + 0.017X_2 + 0.073X_3$.

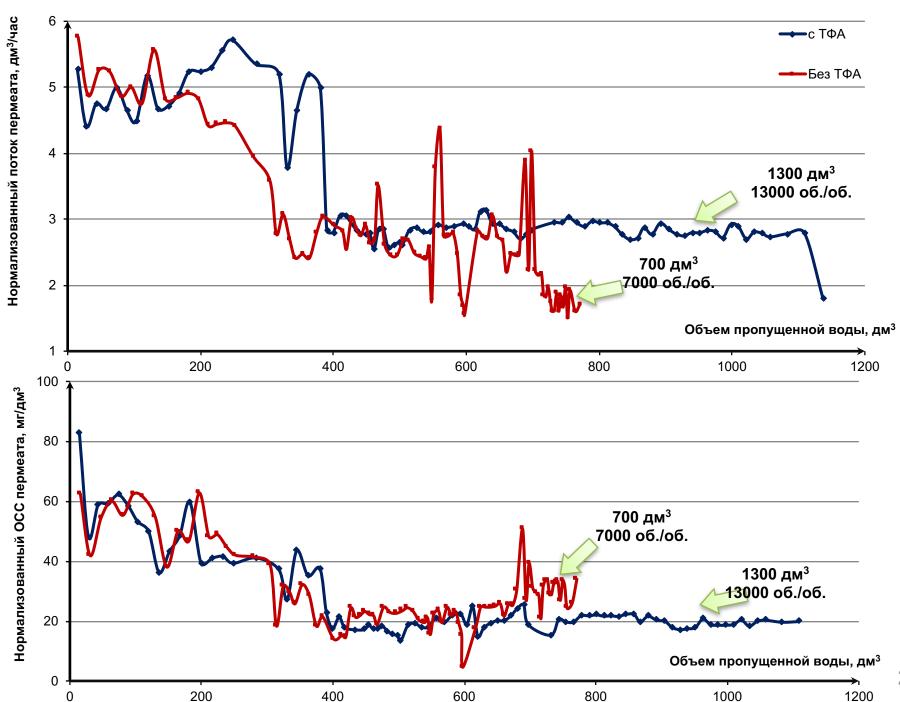
Результаты исследования десорбции

Параметр	INH1	INH2	
Лимитирующая стадия	Внутренняя диффузия		
Коэффициент диффузии, см²/с	1,438·10 ⁻¹⁰	1,741·10-10	
Эффективность десорбции, %	93%	84%	
Сравнительные характеристики селективности десорбции	SO ₄ ²⁻ < HCO ₃ ⁻ < Cl ⁻	SO ₄ ²⁻ = HCO ₃ ⁻ < Cl ⁻	
Математическое описание процесса десорбции	$Y = 0.015 + 0.0046C_{SO_4^{2-}} + 0.0061C_{HCO_3} + 0.0035C_{CI}$	$Y = 0,0003 + 0,0068C_{SO_4^{2-}} + 0,0067C_{HCO_3^{-}} + 0,0065C_{Cl^{-}}$	
Ресурс ТА, об./об.	1,5·10 ⁵	1,3·10 ⁵	

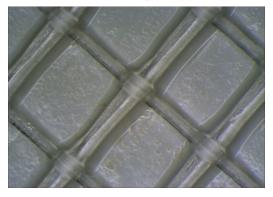

Условия получения ТА

- В качестве носителя может быть использован макропористый СДВБ анионит, содержащий не менее 1,6 мг-экв/см³ функциональных групп, более 90% из которых низкоосновные;
- По результатам исследования для изготовления ТА выбран INH1, который имеет высокий коэффициент эффективности β и продемонстрировал больший ресурс работы;
- Сорбция INH выбранным НОА проводится в статических условиях из раствора INH1 с pH <1,5 в течение 20-24 ч до достижения содержания INH1 в фазе TA не менее 1,3 мг-экв/см³.

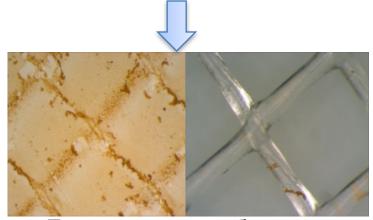
Пилотные испытания процесса коррекционной обработки воды для ОО с использованием ТА


Условия процесса:

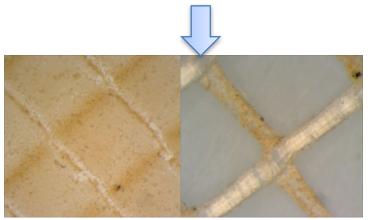
Мембранный элемент	Dow Filmtec TW30-1812-50
Рабочее давление	3,8—4,8
Продолжительность	38 днів
Объем ТА	100 см ³
Гидравлический КПД	75%



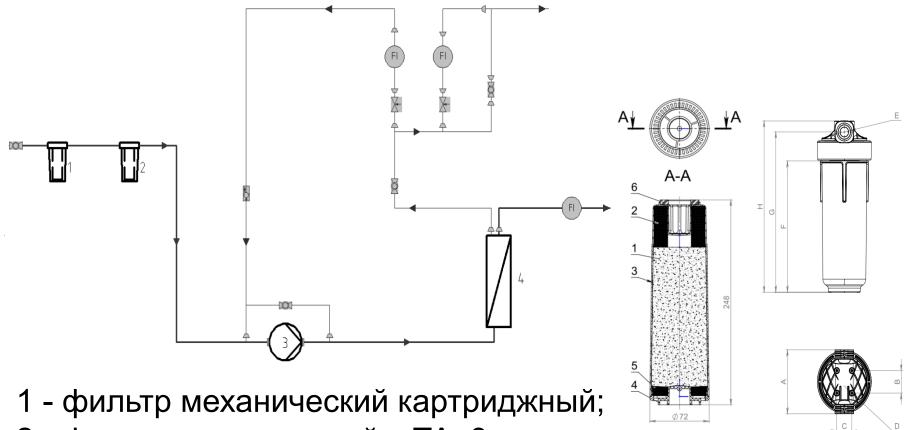
Экспериментальная установка для исследования эффективности предотвращения скейлинга



Результаты анализа отложений на мембране


Чистая мембрана (отложения отсутствуют)

Содержание СаСО₃ 9,5 мг/г полотна


ТА в качестве префильтра

Содержание СаСО₃ 175,5 мг/г полотна

Поверхность мембраны без ТА

Технология коррекционной обработки

2 - фильтр картриджный с ТА; 3 - насос высокого давления; 4 - мембранодержатель с мембранным

элементом

ВЫВОДЫ

- 1. Установлена возможность получения твердого антискаланта на основе ионита и фосфонатного ингибитора скейлинга.
- 2. Выбран носитель для получения твердого антискаланта низкоосновный СДВБ макропористий анионит в ОН-форме.
- 3. Показано, что взаимодействие фосфонатных ингибиторов скейлинга с низкоосновным анионитом происходит по механизму ионного обмена с лимитирующей стадией внутренней диффузии.
- 4. Установлены оптимальные условия получения твердого антискаланта.
- 5. Показано, что высвобождение ингибиторов из твердого антискаланта происходит по механизму ионного обмена, при этом для выбранного ингибитора наиболее значимым является влияние гидрокарбонат-иона. Ресурс ТА для гидрокарбонатных вод составляет 1,5·10⁵ об/об.
- 6. Показана эффективность применения твердого антискаланта для стабилизационной обработки воды при обратноосмотическом обессоливании ресурс мембраны повышается в 1,9 раза.

Спасибо за внимание!